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ABSTRACT
Shot-noise models deal with the cumulative output of a system whose input is subject
to a random Poisson succession of equally distributed impulses or shots, each fol-
lowed by some attenuation dynamics. With population dynamics in mind, we study
the cases when the attenuation dynamics are either given by some ad hoc attenua-
tion function or by some nonlinear ordinary dynamical system or by a (sub-)critical
branching process. In the three cases, an interesting issue concerning extinction and
idle periods is when the overlapping subpopulations can go extinct in finite time.
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1. Introduction

Piecewise-deterministic Markovian decay/surge and growth/collapse population pro-
cesses were recently investigated in (Goncalves et al. 2020 and Goncalves et al. 2022).
We herewith study alternative decay/surge continuous-time shot-noise models, now
describing the current accumulation of the declining contributions of overlapping sub-
populations (each triggered by random initial independent shot conditions) which
occurred at the random times of a Poisson process in the past.

Shot-noise or Schottky noise consists of a model of discontinuous noise pertaining to
linearly filtered continuous-time physical systems conveyed by pulses. Its discontinuous
nature stems from the discreteness of quanta triggering local flows including electrons
or photons in engineering systems, packets in communication systems (see e.g. (Snyder
1991), including for historical background, and (Parzen 1962), but also immigrants
in population dynamics, etc... It is an ubiquitous process in Nature. When there is
an attenuation process following each shot, we shall speak of decay/surge shot-noise
overlapping population models.

Decay/surge shot-noise models have applications in wear processes that need
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recurrent adjunction of fresh material for maintenance (reliability for maintenance).
Wear being here the damaging, gradual removal or deformation of material at solid
surfaces, caused by erosion (mechanical) or corrosion (chemical). As for populations,
wearing consists of aging and death, needing reinvigoration through immigration
to survive. Such processes are also meaningful in the modelling of river flow data
(see Lawrance and Kottegodan (1977), Lefebvre and Bensalma (2015) and the
References to applied works in Vervaat (1979), the modeling of storage problems,
pharmacokinetics describing the accumulation of a chemical product in the human
body after several injections and also in epidemiology where shocks (formation
of clusters) after-effects are slowly attenuated through the process of recovering.
Cumulating abruptly increasing work-loads which are being slowly reduced as
tasks are being successively accomplished in parallel is also part of the folklore
in Computer Science. Such models therefore account for systems where stress is
accumulated through abrupt random shocks each slowly released after the shocks
(a kind of dual of growth/collapse models whereby stress slowly and continuously
accumulates, being interrupted by abrupt release). They are generically non-Markov
piecewise deterministic models, however with some notable Markovian exceptions.
As is apparent, the key specificity of decay/surge shot-noise models is based on the
collective superposition of a random number of declining sub-populations initiated
by random shots occurring at Poissonian times. We stress that, even though most
decay/surge shot-noise processes are non-Markovian, their embedded chain is, which
is a nice feature for simulation purposes.

We start describing the main statistical features of the classical linear shot-noise
process with an ad hoc attenuation function (Section 2) before switching to a nonlinear
version of it (Section 3) when the attenuation function stems from the flow of some
nonlinear dynamical system. We end in (Section 4) with a related class of Markovian
shot-noise models akin to (sub-)critical branching processes with immigration, with
emphasis on the binary branching process. In the three cases, important questions
related to local extinction of the shot-noise process arise, whenever the constituting
overlapping subpopulations are allowed to go extinct in finite time.

2. The linear Shot-Noise

We first attempt to describe here the many facets of the linear shot-noise model.

2.1. Generalities

Let Yn, n ≥ 1 be a sequence of independent and identically distributed (iid) positive
random variables that will represent the amplitudes of the shocks faced by some sys-
tem in the course of its lifetime. We let FY (dy) = P (Y ∈ dy), FY (y) = P (Y ≤ y) ,
F Y (y) = P (Y > y) and ϕY (q) = E

(
e−qY

)
, q ≥ 0 denote the law and Laplace-Stieltjes

transform (LST) of Y . We assume that Y has no atom at 0 and

(LM) : E
(
log+ Y

)
<∞, (1)

without much loss of generality on Y (finiteness of the first logarithmic moment con-
dition).
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2.1.1. The underlying counting Poisson process for shocks occurrences

We further assume that shocks occur at random times Sn, n ≥ 1 (S1 < S2 < ...)

generated by a possibly time-inhomogeneous Poisson process Pt =Poi
(∫ t

0 ds · λs
)
on

the positive real line, so with rate λt ≥ 0 (assumed a continuous function of time). We

require Λt =
∫ t
0 ds · λs < ∞, for all t ∈ [0,∞). With Pt = # {n : Sn ≤ t} therefore,

with s, t > 0

P (Pt+s − Pt = n) =
(Λt+s − Λt)

n

n!
e−(Λt+s−Λt).

So, 0 = S0 < S1 < ... < Sn < ... are points of a Poisson process with intensity Λt on
the real half-line. This means

Sn = Λ−1 (S∗
n) ,

where S∗
1 < ... < S∗

n < ... are points of a rate 1 homogeneous Poisson process and Λ−1

is the increasing generalized inverse function of t ≥ 0→ Λt. Consequently, with n ≥ 1,

P (Sn ≤ t) = P (S∗
n ≤ Λt)

where P (S∗
n ≤ t) = 1

(n−1)!

∫ t
0 e

−ssn−1ds, an Erlang distribution. Denoting Tn (Sn−1) :=

Sn − Sn−1, n ≥ 1, the times elapsed between consecutive jumps of Pt, with dis-

tribution P (Tn (Sn−1) > t) = e
−

∫ Sn−1+t

Sn−1
λsds, t ≥ 0, and mean E (Tn (Sn−1)) =

eΛSn−1

∫∞
Sn−1

e−Λsds. Note that P (T1 > t) = P (T1 (S0 = 0) > t) = e−
∫ t

0
λsds is the

distribution of the time elapsed before the first jump occurs, and, for n > 1

P (Tn > t) =

∫ ∞

0
P (Tn (s) > t)P (Sn−1 ∈ ds) =

1

(n− 1)!

∫ ∞

0
dsλse

−(Λt+s−Λs)e−ΛsΛn−1
s =

1

(n− 1)!

∫ ∞

0
dΛse

−Λt+sΛn−1
s .

We stress from this analysis that the sequence (Sn) has the structure of a homogeneous
Markov chain which reduces to a sequence with independent increments if the rate λt
reduces to a constant (when Pt is a homogeneous Poisson process).

We shall limit ourselves to the illustrative case

λt = λta−1 with λ, a > 0, (2)

so that a = 1 is the time-homogeneous Poisson case at rate λ.
When a > 1 (a < 1), there is a speeding up (down) of the jumps’ frequencies with

time.
When a > 2, we have S1 < S2 < ... < S∞ with S∞ <∞ and the underlying Poisson

counting process Pt explodes in finite time.
This is because the explosion criterion of Pt (as a pure jump process) is (see Kersting
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and Klebaner (1995))

(E) :
∑
n≥1

1

λPSn

=
∑
n≥1

1

λn
<∞. (3)

Remark. Another worthy choice often appearing in the literature is

λt = λe−d·t with λ > 0 and d ∈ R. (4)

In this latter case, when d < 0 ( d > 0), there is an exponential speeding up (down) of
the jumps’ frequencies with time, with d < 0 corresponding to an explosive situation
in view of

∑
n≥1

1
λn

= λ−1
∑

n≥1 e
dn <∞.

2.1.2. The response function and the linear shot-noise process

Let h (t), t ≥ 0 with h (0) = 1 be a causal non-negative non-increasing response
function translating the way shocks attenuate as time passes by. We assume h (t)→ 0
as t→∞. We also require ∫ ∞

0
h (s) ds <∞, (5)

else sh (s)→ 0 as s→∞.
We allow response functions h (t) with bounded support [0, t0] so with h (t) = 0

if t ≥ t0 > 0. As a generic example, with b ≥ 0, h (t) = (1− t/t0)b+ where x+ =
max (x, 0) .

With X0 = x ≥ 0, consider then the shot-noise process

Xt = x+

∫ t

0

∫
R+

yh (t− s)µ (ds, dy) , (6)

where µ (ds, dy) =
∑

n≥1 δSn
(ds) δYn

(dy) (translating independence of the shots’
heights and occurrence times). Note that, with dNs =

∑
n≥1 YnδSn

(ds) , so with
Nt =

∑
n≥1 Yn1 (Sn ≤ t) representing a time-inhomogeneous compound Poisson pro-

cess with jumps’ amplitudes Y,

Xt = x+

∫ t

0
h (t− s) dNs, (7)

as a linearly filtered compound Poisson process. Under this form, it is clear that Xt

cannot be Markov unless h (t) = e−µt. We shall let

ν (dt, dy) = P (Sn ∈ dt, Yn ∈ dy for some n ≥ 1)

= λtdt · FY (dy) .

In the sequel, we shall assume without much loss of generality that x = 0.
The linear shot-noise process Xt has two alternative equivalent representations,

emphasizing its superposition characteristics:
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(1) Xt =
∑
n≥1

Ynh (t− Sn)1 (Sn ≤ t)

(2) Xt =

Pt∑
p=1

Yph (t− Sp (t)) .

Both show that Xt is the size at t of the whole decay/surge population, summing
up all the declining contributions of the sub-families which appeared in the past at
jump times (a shot-noise or filtered Poisson process model appearing also in Physics
and Queuing theory, Snyder (1991), Parzen (1962), Takács (1962), Ross (2020)). The
contributions Yph (t− Sp (t)), p = 1, ..., Pt, of the Pt families to Xt are stochastically
ordered in decreasing sizes.

Remark. Note that defining the new [0, 1]− valued process Ut = e−Xt , from repre-
sentation (1):

Ut =
∏
n≥1

(
1− 1 (Sn ≤ t)

(
1− e−Ynh(t−Sn)

))
(8)

is a growth-collapse multiplicative model growing between consecutive jump times and
collapsing (shrinking) at new jump times.

For the representation (2), let Sp (t) be iid jump times with common law
P (S (t) ∈ ds) = λsds/Λt1 (s ∈ [0, t]), so supported by the interval [0, t]; there are
Pt =Poi(Λt) such jump events. Denoting by Sp (t) the ordered version of Sp (t),
p = 1, ..., Pt (so with S1 (t) < ... < SPt

(t)), the joint density of Sp (t), p = 1, ..., Pt is:

ft (s1, ..., sPt
) = Pt!

Pt∏
p=1

λsp
Λt

dsp · 10<s1<...<sPt<t.

And therefore, the LST of Xt reads

ΦXt (q) := E
(
e−qXt

)
=
∑
p≥0

P (Pt = p)

∫
0<s1<...<sp<t

p!

p∏
r=1

λsr
Λt
ϕY (qh (t− sr)) dsr

= e−
∫ t

0
ds·λs

1 +
∑
p≥1

∫
0<s1<...<sp<t

p∏
r=1

λsrϕY (qh (t− sr)) dsr

 .

Whence the two expressions of ΦXt (q) = E
(
e−qXt

)
= E (U qt ) :

ΦXt (q) = exp

{
−
∫ t

0
ds · λs (1− ϕY (qh (t− s)))

}
(9)
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ΦXt (q) = exp

{
−Λt

(
1−

∫ t

0
ds · λs

Λt
ϕY (qh (t− s))

)}
. (10)

- The first expression as from (9) is known as Campbell’s formula, see Campbell
(1909a), Campbell (1909b) and Kingman (1992).

- The last equivalent expression of ΦXt (q) in (10) shows that, for each t > 0, (
d
=

meaning equality in distribution)

Xt
d
=

Pt∑
p=1

Cp (t) , (11)

where Cp (t) are iid copies of C (t), the ‘typical’ clone size at t. The common law of
the Cp (t)s is characterized by its LST

E
(
e−qCt

)
=

1

Λt

∫ t

0
ds · λsϕY (qh (t− s)) , (12)

a probability mixture of the LSTs ϕY (qh (s)) and therefore a LST.

- Concerning the two-point joint distributions, with q1, q2 ≥ 0, t2 > t1, we have (see
Parzen (1962), Theorem 5A, page 146)

ΦXt1,t2 (q1, q2) := E
(
e−q1Xt1

−q2Xt2

)
= (13)

exp−

{ ∫ t1
0 ds · λs (1− ϕY (q1h (t1 − s) + q2h (t2 − s)))+∫ t2

t1
ds · λs (1− ϕY (q2h (t2 − s)))

}
.

If EY 2 <∞, it follows from (9) and (13) that

EXt = EY

∫ t

0
ds · λsh (t− s) ; σ2 (Xt) = EY 2

∫ t

0
ds · λsh2 (t− s)

Cov (Xt1 , Xt1+τ ) = EY 2

∫ t1

0
ds · λsh (t1 − s)h (t1 + τ − s) , where t1, τ > 0.

2.1.3. Miscellaneous properties

- Note that the joint law of (Pt, Xt) is characterized by

E
(
zPt

0 e
−qXt

)
= exp

{
−
∫ t

0
ds · λs (1− z0ϕY (qh (t− s)))

}
, (14)

so that

E
(
e−qXt | Pt = p

)
=

[∫ t

0
ds · λs

Λt
ϕY (qh (t− s))

]p
=
[
E
(
e−qCt

)]p
, p ≥ 0.
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- The number of shocks above level y over time t : With Pt (y) =
∑Pt

p=1 1 (Yp > y),
we have

E
(
z
∑Pt

p=1 1(Yp>y)
)

= e−
∫ t

0
ds·λs(1−E(z1(Y h(t−s)>y)))

= e−
∫ t

0
ds·λsP(Y h(t−s)>y)(1−z),

a Poisson random variable (rv) with intensity
∫ t
0 ds · λsP (Y h (t− s) > y) . In the ho-

mogeneous Poisson case, the intensity reduces to

λ

∫ t

0
ds ·P (Y h (s) > y) = λ

∫ t

0
ds · F Y (y/h (s)) .

Supposing mn := EY n <∞,

kn (t) = mn

∫ t

0
dsλsh (t− s)n <∞

is the n−th cumulant of Xt, with in particular k1 (t) = E (Xt) and k2 (t) = σ2 (Xt)
and, from (9), if mn := EY n <∞, for all n ≥ 1,

− log ΦXt (q) =
∑
n≥1

(−1)n−1

n!
kn (t) q

n.

This occurs when the moment condition holds

(M) : ϕY (q) <∞ for all q > −qc for some qc > 0.

2.1.4. Special cases

We shall consider two particular cases:

• h (t) = e−µt, t ≥ 0, µ > 0. Then

Xt = e−µt
∫ t

0
eµsdNs, (15)

so that

dXt = −µXtdt+ dNt,

showing that Xt is a time-inhomogeneous Markov process driven by Nt, known as the
classical linear shot-noise. This is clearly the only choice of the response function that
makes Xt Markov. In that case,
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ΦXt (q) : = Ee−qXt = e−
∫ t

0
dsλt−s(1−ϕY (qe−µs))

= e−
1

µ

∫ 1

e−µt duλt+µ−1 log u

1−ϕY (qu)

u , where e−µs = u.

Supposing mn := EY n <∞, then

kn (t) = mn

∫ t

0
dsλse

−nµ(t−s)

= mne
−nµt

∫ t

0
dsλse

nµs

solving

.
kn (t) = −nµkn (t) +mnλt.

If λt = λta−1, λ, a > 0, when a ̸= 1 and applying L’Hospital rule,∫ t

0
dsλse

nµs = λ

∫ t

0
ds · sa−1enµs ∼ (nµ)−1 ta−1enµt as t→∞.

so that

kn (t) ∼ mnt
a−1 as t→∞.

- If a > 1, both k1 (t) = E (Xt) and k2 (t) = σ2 (Xt) grow algebraically at rate a− 1

and a Central Limit Theorem holds (
d→ meaning convergence in distribution)

Xt − k1 (t)√
k2 (t)

d→ N (0, 1) as t→∞. (16)

This is because if m3 <∞, then k3 (t) <∞ with, Parzen (1962),

k3 (t)

k2 (t)
3/2
∼ m3t

a−1

(m2ta−1)3/2
=

m3

m
3/2
2

t−(a−1)/2 → 0 as t→∞.

- If a < 1, both k1 (t) = E (Xt) and k2 (t) = σ2 (Xt) → 0 as t → ∞ showing that
Xt → X∞ = 0 with probability 1 (almost sure extinction), but not in finite time.
Indeed, this extinction time would be S∞ <∞ only if a > 2.

As q →∞, we have

ΦXt (q) = e−
∫ t

0
dsλt−s(1−ϕY (qe−µs))

∼ e−
∫ t

0
dsλt−s = e−Λt ,

due to ϕY (q) → 0 as q → ∞ (if Y has no atom at 0). Hence P (Xt = 0) = e−
λ

a
ta =
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P (S1 > t) , with∫ t

0
P (Xs = 0) ds =

1

a

∫ ta

0
e−

λ

a
ττ1/a−1dτ → E (S1) = (λ/a)−1/a Γ (1/a+ 1) as t→∞.

As required because h (t) > 0, there is no visit to zero but initially if x = 0.
- If a = 1 (λt = λ),

ΦXt (q) := Ee−qXt = e−λ
∫ t

0
dτ(1−ϕY (qe−µτ )) = e

−λ

µ

∫ q

qe−µt dq
′ 1−ϕY (q′)

q′ (17)

→ e−
λ

µ

∫ q

0
dq′

1−ϕY (q′)
q′ =: ΦX∞ (q) as t→∞.

so that Xt has a non-degenerate weak limit X∞ in the self-decomposable (SD) class
if and only if E

(
log+ Y

)
< ∞, guaranteeing that (applying Fubini), with F Y (y) =

P (Y > y), y ≥ 0,∫ q

0
dq′

1− ϕY (q′)

q′
=

∫ ∞

0

dy

y
F Y (y)

(
1− e−qy

)
<∞. (18)

(see Proposition A.3.2 in Steutel (2003)). As x→ 0, for some slowly varying function
L at zero, by Karamata theorem, we have

P (X∞ ≤ x) ∼ x
λ

µL (x) . (19)

See Theorem 1 in Iksanov and Jurek (2003). From the expression of ΦX∞ (q), X∞ is in
the self-decomposable (SD) class, (see Theorem 2.9 in Steutel (2003)). In particular it
is infinitely divisible and unimodal (see Theorem 2.17 in Steutel (2003)).

Under condition (M), letting θ = λ/µ and ψ (q) =
∫ q
0 dq

′ 1−ϕY (q′)
q′ , a saddle point

estimate yields a large−x estimate of the density of X∞ as

fX∞ (x) ∼ K exq0(x)−θψ(q0(x))√
−2πθψ′′ (q0 (x))

, (20)

where q0 (x) is uniquely defined by θψ′ (q0 (x)) = x. Here K > 0 is a proper
normalization constant.

Examples. The simplest explicit case is when ϕY (q) = 1/ (1 + q) (else Y ∼Exp(1))
so that

ΦX∞ (q) = (1 + q)−θ

the LST of a Gamma(θ, 1) distributed rv. Condition (M) is satisfied.
So long as E

(
log+ Y

)
<∞,

ΦX∞ (q) = e−θ
∫ q

0
dq′

1−ϕY (q′)
q′
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is a proper LST and the rv Y needs not have finite moments. As an example, suppose
ϕY (q) = 1/ (1 + qα) with α ∈ (0, 1) (modelling heavy-tailed large shocks). The Linnik
rv Y only has moments of order smaller than α, Lin (2001), and

ΦX∞ (q) = (1 + qα)−θ/α .

This is again the LST of a Linnik rv, because the rv Y is infinitely divisible; see Lin
(2001), for example.

The ergodic case a = 1 for which Xt
d→ X∞ separates a case where Xt is transient

at 0 (0 < a < 1) from a case where Xt is transient at ∞ (a > 1). When a > 2, state
∞ is in addition reached in finite time.

• If Pt is a homogeneous Poisson process with constant rate λ > 0 and for any
h (t) > 0 on [0,∞) satisfying

∫∞
h <∞,

ΦXt (q) : = Ee−qXt = e−λ
∫ t

0
dτ(1−ϕY (qh(τ)))

→ e−λ
∫ ∞
0
dτ(1−ϕY (qh(τ))) = ΦX∞ (q) as t→∞,

if Xt has a non-degenerate weak limit. It was proved in Iksanov and Jurek (2003), that
a shot-noise process with a characteristic triplet (λ, FY , h) has the well defined limit
ΦX∞ (q) if and only if,

λ

∫ ∞

0
Emin (1, Y h (s)) ds <∞.

Note that, upon the change of variable h (τ) = u← τ

ΦX∞ (q) = eλ
∫ 1

0
dh−1(u)(1−ϕY (qu)) = eλ

∫ 1

0
dh−1(u)(1−ϕuY (q)), (21)

where h−1, the generalized inverse of h, is a decreasing function [0, 1] → [0,∞] with
h−1 (u)→∞ as u→ 0 but uh−1 (u)→ 0 as u→ 0 resulting from τh (τ)→ 0 as τ →∞
if
∫∞

h <∞. The function h−1 is thus the tail function of a Lévy measure integrating

1 ∧ u and so
∫ 1
0 dh

−1 (u) (1− ϕuY (q)) < ∞. Under the condition
∫∞

h < ∞ and

E
(
log+ Y

)
< ∞ therefore, ΦX∞ (q) is the LST of some proper rv X∞ which is clearly

infinitely divisible.
Examples.
(i) To take a counter-example, suppose h (τ) = 1/ (1 + τ) and ϕY (q) = 1/ (1 + q) .

Then ΦX∞ (q) = 0 entailing X∞ =∞. No non-trivial ΦX∞ (q) exists because
∫∞

h =∞.
The attenuation function h has a long memory of the events occurring in the past and
keeps track of them, resulting in Xt →∞.

(ii) However, choosing h (τ) = 1/
(
1 + τ2

)
yields the non-trivial limit (making use

in the integration of an arctan)

ΦX∞ (q) = e−λq
∫ ∞
0

dτ

1+q+τ2 = e−λ
π

2

q√
1+q .

With Ψ (q) = − log ΦX∞ (q), we have Ψ′ (q) = λπ2 (1 + q/2) (1 + q)−3/2 > 0, Ψ′′ (q) =

−λπ4 (2 + q/2) (1 + q)−5/2 < 0,..., and Ψ′ (q) is completely monotone showing that X∞

70



Asian Journal of Statistical Sciences Thierry E. Huillet

is infinitely divisible in the compound Poisson class.
(iii) Choosing (one-sided stable) ϕY (q) = e−q

α

, α ∈ (0, 1) and h (τ) = e−µτ , yields
the well-defined limiting LST

ΦX∞ (q) = e−
λ

αµ

∫ 1

0
dv

v (1−e
−vqα).

2.1.5. Bounded support response function. First time to (local) extinction
and time spent in state 0

If h (s) has a bounded support,
∫∞
0 h <∞ always and

ΦXt (q) = e−
∫ t∧t0
0

dsλt−s(1−ϕY (qh(s))).

If Pt is a homogeneous Poisson process with constant rate λ, as t→∞

ΦXt (q) = e−λ
∫ t∧t0
0

ds(1−ϕY (qh(s)))

→ e−λ
∫ t0
0
ds(1−ϕY (qh(s))) = ΦX∞ (q) .

The limit law is reached in finite time t0. Note that X∞ has an atom at x = 0 with

P (X∞ = 0) = lim
q↑∞

ΦX∞ (q) = e−λt0 .

To take a simple example, supposing ϕY (q) = 1/ (1 + q) and h (s) = (1− s)+ , then

ΦX∞ (q) = e
−λ

∫ 1

0
ds

(
1− 1

1+q(1−s)

)
= e

−λ
(
1− 1

q
log(1+q)

)
,

the LST of a compound Poisson rv with cluster size with k−moment 1/ (k + 1) .
Let Zn = XSn

denote the state of Xt at the jump time Sn, standing for the peaks
of Xt (see the following Section). Due to the linearity of the linear shot-noise, the
trajectories of Xt can be obtained while launching, for each t between Sn and Sn+1,
a continuous trajectory Znh (t) where h (t) has support [0, t0] . As a result, as soon as
Tn+1 = Sn+1 − Sn exceeds t0, an extinction event of Xt occurs for each t ∈ [t0, Sn+1) .
The first time when this event occurs allows one to compute the time to first extinction
as follows. With

N = inf (n ≥ 1 : Tn+1 > t0) ,

the first time to true local extinction (which is also the first return time to 0 from
above if X0 = 0) takes the form

τ0,0 = SN + t0. (22)

We have

P (N = n) =

n−1∏
m=1

P (Tm+1 ≤ t0)P (Tn+1 > t0) , n ≥ 1,
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reducing if Pt is a homogeneous Λ−Poisson process to the geometric distribution

P (N = n) =
(
1− e−λt0

)n−1
e−λt0 .

With t > t0, we get

P (τ0,0 > t) =

∫ ∞

Λt−t0

dse−s
∑
n≥1

P (N = n)

(n− 1)!
sn−1, (23)

which, when Pt is a homogeneous Poisson process, simplifies to the exponential distri-
bution with mean λ−1eλt0 :

P (τ0,0 > t) = e−λt0
∫ ∞

λ(t−t0)
dse−se

−λt0
= e−λe

−λt0 (t−t0), t > t0.

This expression is reminiscent of the Eyring-Kramers time to over-cross an energy
barrier for a small noise diffusion process in a double-well potential, Eyring (1935) -
Kramers (1940) (escape from a metastable state). The larger the upper bound t0 of
the support of h is, the longer the mean time to first extinction, with an exponential
dependence on t0.

When h (τ) has a bounded support [0, t0], the time Xt spends in the void state 0
during the time interval [0, t], is (assuming X0 = 0)∫ t

0
1 (Xs = 0) ds = T1 ∧ t+

∑
n≥2

(Tn − t0)+ 1 (Sn ≤ t) + (t− t0)1 (Sn ≤ t− t0) . (24)

In the ergodic case, as t→∞, this zero-set obeys,

t−1

∫ t

0
1 (Xs = 0) ds→ P (X∞ = 0) = e−λt0 . (25)

Remark. The renewal rv SN+1 is also of interest, being the time elapsed between
two consecutive surges following a passage to state 0. It corresponds to the length of
the excursions associated to the process Xt and constituting its iid building blocks.

2.2. The embedded chain

We come back to the linear shot-noise model with impulse function h not necessarily
with bounded support. Let Zn = XSn

denote the state of Xt at the jump time Sn,
tracking the peaks of Xt. Note Zn > 0 because Yn > 0. As emphasized earlier, the
trajectories of Xt can be obtained by launching for each t between Sn and Sn+1 a
continuous trajectory Znh (t), a useful property in view of the simulation of Xt if
Zn has a Markovian structure. Even though indeed, in most cases but the exceptional
Malthus case, Xt is non-Markov, it turns out that the couple (Zn, Sn) has a Markovian
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structure which is a remarkable fact. Indeed, we have

Zn+1 = h (Tn+1)Zn + Yn+1

Sn+1 = Sn + Tn+1

showing that (Zn, Sn) is in general a bivariate Markov chain whose second marginal
only (Sn) is itself a Markov chain, as a result of

P (Tn+1 > t | Sn = s) = e−
∫ s+t

s
λs′ds

′
, t ≥ 0.

The transition matrix of (Zn, Sn) may be read from

P
(
Zn+1 ≤ z′, Tn+1 ≤ t | Zn = z, Sn = s

)

=

∫ t

0
P
(
Yn+1 ≤ z′ − h

(
s′
)
z
)
P
(
Tn+1 ∈ ds′ | Sn = s

)

=

∫ t

0
FY
(
z′ − h

(
s′
)
z
)
P
(
Tn+1 ∈ ds′ | Sn = s

)
,

where FY (y) = P (Y ≤ y), y ≥ 0. In the last integral, the range of the integration is
in fact

[
h−1 (z′/z) ∧ t, t

]
taking into account FY (y) = 0 if y ≤ 0. Defining

N (z, t) =
∑
n≥1

1 (Zn > z, Sn ≤ t)

yields the overshoot intensity

Λ (z, t) =
∑
n≥1

P (Zn > z, Sn ≤ t) ,

so with random rate, conditional on (Zn, Sn)

λ (z, t) = λt
∑
n≥1

F Y (z − h (Tn)Zn−1)1 (Sn−1 < t ≤ Sn) .

If Pt is a homogeneous Poisson process with constant rate λ > 0, then (Sn) is a
Markov chain with independent increments and so (Zn) is itself a Markov chain with
transition matrix

P
(
Zn+1 ≤ z′ | Zn = z

)
= P

(
Yn+1 ≤ z′ − h (Tn+1) z

)
= λ

∫ ∞

h−1(z′/z)
ds′e−λs

′
FY
(
z′ − h

(
s′
)
z
)
.

In that case, Zn
d→ Z∞ as n→∞, where, with U = h (T ) a random variable taking
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values in [0, 1] having probability distribution function (pdf) P (U ≤ u) = e−λh
−1(u),

Z∞
d
= UZ ′

∞ + Y (26)

where, with Z ′
∞

d
= Z∞, in the RHS (U,Z ′

∞, Y ) are mutually independent. With (Yn)
an iid sequence independent of U , therefore,

Z∞
d
=
∑
n≥0

UnYn+1,

so with

ΦZ∞ (q) =
∏
n≥0

E (ϕY (Unq)) (27)

as an infinite product of LSTs. Because Xt and Zn are jointly ergodic or not, this
is a well-defined non-degenerate LST under the assumption E

(
log+ Y

)
< ∞ and

uh−1 (u) → 0 as u → 0, Vervaat (1979). Note that, with Z−
n = XS−

n
the position

just before the jump occurring at Sn: Zn = Z−
n + Yn where (Z−

n , Yn) are mutually

independent. We thus get Z−
n

d→ Z−
∞ as n→∞ where Z−

∞ obeys Z−
∞

d
= U (Z−′

∞ + Y ) ,
so with

ΦZ
−

∞ (q) =
∏
n≥1

E (ϕY (Unq)) . (28)

The Markov case. With (Z−
∞, Y, U) mutually independent, we get

ΦZ
−

∞ (q) =

∫ 1

0
FU (du)E

(
e−qu(Z

−
∞+Y )

)
=

∫ 1

0
dufU (u) ΦZ

−

∞ (qu)ϕY (qu)

= q−1

∫ q

0
dq′fU

(
q′/q

)
ΦZ

−

∞
(
q′
)
ϕY
(
q′
)
.

If, as in the Markov case, U = h (T ) = e−µT , with θ = λ
µ > 0, fU (u) = θuθ−1 we get

the functional equation

ΦZ
−

∞ (q) = θq−θ
∫ q

0
dq′
(
q′
)θ−1

ΦZ
−

∞
(
q′
)
ϕY
(
q′
)
.

This can be integrated, leading to

ΦZ
−

∞ (q) = e−θ
∫ q

0
dq′

1−ϕY (q′)
q′ , (29)

with 1−ϕY (q′) = − logψY (q′) for some compound Poisson LST ψY (q′) . Then Z−
∞ is

SD with Z−
∞

d
= X∞. Finally,

ΦZ∞ (q) = ϕY (q) ΦZ
−

∞ (q) = ϕY (q) e−θ
∫ q

0
dq′

1−ϕY (q′)
q′ .
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2.3. Time to failure

Introduce the time-to-failure rv Tc by P (Tc ∈ dt | Xt) = βXtdt, β > 0 or equivalently

P (Tc > t) = Ee−β
∫ t

0
Xsds. (30)

This states that the occurrence rate of a lethal trauma is a linearly increasing function
of the residual system stress Xt (which can be the total size or pressure of some
population subject to random brutal immigration events each balanced by smooth
attenuation aftereffects). This is also particularly meaningful when Xt represents the
current total work-load to be achieved. A large level of stress can lead to failure. Then,
letting Xt =

∫ t
0 Xsds and observing

Xt =
∑
n≥1

YnH (t− Sn)1 (Sn ≤ t) ,

where H (t) =
∫ t
0 h (s) ds, by Campbell’s formula again,

P (Tc > t) = e−
∫ t

0
λs(1−ϕY (βH(t−s)))ds. (31)

When Y has all its moments finite, a β−expansion of the cumulative hazard function

− logP (Tc > t) = − logEe−βXt is available. Supposing mn := EY n <∞,

kn (t) = mn

∫ t

0
dsλsH (t− s)n <∞

is the n−th cumulant of Xt, with in particular k1 (t) = E
(
Xt

)
and k2 (t) = σ2

(
Xt

)
.

From (31)

− logP (Tc > t) =
∑
n≥1

(−1)n−1

n!
kn (t)β

n.

• In the homogeneous Poisson(λt) case,

P (Tc > t) = e−λ
∫ t

0
(1−ϕY (βH(s)))ds

and

kn (t) = λmn

∫ t

0
dsH (s)n .

When h (s) = 1/
(
1 + s2

)
, H (s) = arctan (s) and

kn (t) = λmn

∫ t

0
ds arctan (s)n = λmn

∫ arctan t

0

un

cos2 u
du.

In some few examples, an explicit expression of P (Tc > t) itself is available from
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(31). If, for example, ϕY (q) = 1/ (1 + q) (Y ∼Exp(1)) and h (s) = e−µs

P (Tc > t) =

(
1 +

β

µ

(
1− e−µt

))λ/(µ+β)
e−

λβ

µ+β
t.

2.4. A related Hawkes process

The integrated process is also useful in the context of Cox processes as doubly stochas-
tic Poisson processes Pt whose intensity Xt :=

∫ t
0 Xsds is the integrated linear random

shot-noise process (a variant of a self-exciting Hawkes process, Hawkes (1971), Møller
(2003)), so with marginal distribution given by its probability generating function
(pgf), Kolmogorov (1935):

ΦP
t (z) := E

(
zPt
)
= Ee−Xt(1−z) = ΦXt (1− z) ,

where, by Campbell formula

ΦXt (q) = e−
∫ t

0
ds·λs(1−ϕY (qH(t−s))).

The jump times of Pt are thus X
−1

(S∗
n) , where X

−1
(s) := inf

(
t > 0 : Xt > s

)
.

If they exist, the falling factorial moments µn (t) = E (Pt)n of Pt are then given by

µn (t) = E
(
X
n
t

)
= (−1)n ·(n) ΦXt (0) ,

where (n)ΦXt (q) is the n− th derivative of ΦXt (q) .
In particular, if EY 2 <∞,

EPt = EXt = EY

∫ t

0
ds · λsH (t− s)

σ2 (Pt) = EXt + σ2
(
Xt

)
= EY

∫ t

0
ds · λsH (t− s) +EY 2

∫ t

0
ds · λsH2 (t− s) ,

showing that Pt exhibits over-dispersion.
As for the momentsmn (t) = E (Pnt ), they are given bymn (t) =

(n) ΦXt
(
1− eθ

)
|θ=0

where (n)ΦXt
(
1− eθ

)
is the n − th derivative of the moment generating function

ΦXt
(
1− eθ

)
with respect to θ. We also have

P (Pt = 0) = ΦP
t (0) = ΦXt (1) = exp

{
−
∫ t

0
ds · λs (1− ϕY (H (t− s)))

}
P (Pt = n) =

1

n!
E
(
X
n
t e

−Xt

)
=

(−1)n

n!
·(n) ΦXt (1) .

Note that whenever Xt has a weak limit X∞, by Strong Law of Large Numbers, as
t→∞

t−1Pt → X∞, almost surely.
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The Poisson process Pt with intensity Xt is a population count model enlarging the
scope of the linear shot-noise Xt.

2.5. The extremal shot-noise

The extremal shot-noise process is to shot-noise process what Extreme-Value-Theory
is to sums of random variables. Define the extremal shot-noise process X∗

t by:

X∗
t = max

n≥1
Ynh (t− Sn)1 (Sn ≤ t) . (32)

It is the largest of the work-loads currently pending in the system, possibly to be
handled in priority. It also tracks the family with largest population size among those
contributing to Xt. This process was introduced in the Physics’ literature in Eliazar
and Klafter (2007 and 2009) and a Poisson-field version of such processes was studied
in Smith (1990), Dombry (2012). We sketch some of its issues.

By Campbell formula, in case Pt is a homogeneous Poisson process,

P (X∗
t ≤ x) = exp−λ

∫ t

0
F Y (xh (s)) ds. (33)

With xc = inf
(
x > 0 :

∫∞
0 F Y (xh (s)) ds <∞

)
, a limit law with support [xc,∞]

exists if and only if for all ∞ > x > xc ≥ 0,
∫∞
0 F Y (xh (s)) ds < ∞. Whenever

xc =∞, X∗
t →∞ almost surely and some scaling may be necessary.

Examples.
(i) Suppose F Y (y) = (1 + y)−α, α > 0 and h (s) = (1 + s)−2 . We need to check

conditions under which
∫∞

F Y (xh (s)) ds < ∞. For large s ,we get F Y (xh (s)) ∼
x−αs−2α and κ :=

∫∞
0 F Y (xh (s)) ds <∞ if and only if α > 1/2, leading to

P (X∗
∞ ≤ x) = exp−λκx−α,

a Fréchet limit law with full support. Here xc = 0.
If α < 1/2, xc =∞. Then, with at ∼ t1/α−2 →∞,

a−1
t X∗

t
d→ F as t→∞.

where F is in the domain of attraction of a Fréchet distribution.
(ii) Suppose F Y (y) = e−y and h (s) ∼ γ/ log s as s→∞, γ > 0. Then F Y (xh (s)) ∼

s−x/γ with
∫∞
0 F Y (xh (s)) ds < ∞ if and only if x > xc = γ. In that case, an X∗

∞
exists, the law of which has support [γ,∞] . Note that for the chosen h,

∫∞
h = ∞

so it is not in the class of attenuation functions h that guarantees that a proper X∞
exists.

(iii) Suppose h (s) = e−µs. Then, for all x > 0,∫ ∞

0
F Y

(
xe−µs

)
ds =

1

µ

∫ x

0
y−1F Y (y) dy =∞.
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In that case, with at = eµt →∞, as t→∞∫ t

0
F Y

(
xate

−µs) ds = 1

µ

∫ xat

x
y−1F Y (y) dy → 1

µ

∫ ∞

x
y−1F Y (y) dy

showing that

P
(
e−µtX∗

t ≤ x
)
→ e−

λ

µ

∫ ∞
x
y−1FY (y)dy,

a well-defined complementary distribution function whatever the distribution of Y .

Remarks.
(i) When h has bounded support [0, t0], if t > t0, for all x > 0, as t→∞,

P (X∗
t ≤ x) = exp−λ

(∫ t0

0
F Y (xh (s)) ds+ t− t0

)
→ 0,

so with xc =∞. Here X∗
t →∞, almost surely and scaling is necessary.

(ii) Defining Z∗
n = X∗

Sn
, then (Z∗

n) is a Markov chain generated by

Z∗
n+1 = max (h (Tn+1)Z

∗
n, Yn+1) , Z

∗
1 = Y1.

At some random instants, Z∗
n coincides with the underlying Yn. With

K∗
n = inf

(
k ≥ 1 : Z∗

n+k = Yn+k | Z∗
n = Yn

)
, then

T ∗
n+1 =

K∗
n∑

k=1

Tn+k

is the time elapsed between consecutive visits of X∗
t to (Yn) .

3. A non-linear Shot-Noise process

So far the response function at time t to a shot of size y appearing at time 0 had the
separable form yt (y) = yh (t). It is linear in the initial condition, with yt (y1 + y2) =
yt (y1) + yt (y2). We now consider situations where this is no longer the case, as when
the response function is given by yt (y), the flow of some declining population model
started at y. In this setup, with t1, t2 > 0, we rather have yt1+t2 (y) = yt1 (yt2 (y)).
The decay patterns will now be the solution trajectories of the nonlinear differential
equation (43) below, the solution of which is assumed unique and decaying to zero,
either in finite time or not. To a large extent, the previous study of the linear shot-
noise, with its many facets, extends to this nonlinear framework. For lack of space, we
shall not develop all its aspects as this is an easy parallel extension of the linear case,
which could be redundant.

Before proceeding with the non-linear shot-noise construction, we first describe a
large family of decaying flows that can be obtained from a time reversal of population
growth models.
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3.1. From population growth to decay models

We first discuss several deterministic population growth models of the form

.
yt= α (yt) , y0 = y, (34)

where α (y) is continuous on [0,∞), positive on (0,∞) or even sometimes on [0,∞) .
We then show how to switch to population decay models that will be of interest to us
here.

3.1.1. Some special classes of growth models

Let yt > 0 denote the size (mass) of some population at time t ≥ 0, with initially
y := y0 > 0. With α1, c > 0, consider the growth dynamics

.
yt= α1y

c
t , y0 = y, (35)

for some growth field α (y) := α1y
c. Note that this α (y) is increasing with y. Integrat-

ing when c ̸= 1 (the non linear case), we get formally

yt (y) =
(
y1−c + α1 (1− c) t

)1/(1−c)
, y > 0. (36)

Three cases arise:
• 0 < c < 1: then in view of 1/ (1− c) > 1, the growth of yt is algebraic at rate

larger than 1.
• c > 1: then explosion or blow-up of y (t) occurs in finite time t∞ (y) =

y1−c/ [α1 (c− 1)]. We get

yt (y) = y (1− t/t∞ (y))1/(1−c) ,

with an algebraic singularity. Whenever a growth process exhibits finite time explosion,
we say that state ∞ is accessible.
• c = 1: this is a simple special case not treated in (35), strictly speaking. However,

expanding the solution (36) in the leading powers of 1− c yields consistently:

yt (y) = elog(y
1−c+α1(1−c)t)/(1−c)

= elog[y
1−c(1+α1yc−1(1−c)t)]/(1−c) ∼ ye(1/(1−c))α1yc−1(1−c)t ∼ yeα1t.

(37)

This is the simple Malthus growth model.

Remarks.
(i) One can extend the range of c as follows: if c = 0, for all y > 0, y (t) = y+α1t,

a linear growth regime. If c < 0, (36) holds for all y > 0 : because 1/ (1− c) < 1 the
growth of yt is again algebraic but now at rate smaller than 1. In this case however,
α (y) = α1y

c is decreasing with y.

(ii) Another example of a growing population with α (y) decreasing with y is as

79



Asian Journal of Statistical Sciences Thierry E. Huillet

follows: Letting α (y) = α0e
−y leads to a model with slow logarithmic growth:

yt (y) = log (ey + α0t) = y + log
(
1 +

α0

ey
t
)
. (38)

In general α (y) was assumed continuous on [0,∞), positive on (0,∞). Then∫ yt(y)

y

dx

α (x)
= t.

Clearly, t∞ (y) :=
∫∞
y

dx
α(x) is the time needed to reach ∞ starting from some y

inside the domain.
If for y > 0, t∞ (y) :=

∫∞
y

dx
α(x) <∞, (state ∞ accessible), then

yt (y) = t−1
∞ (t∞ (y)− t) ,

and in general, if this is not the case,

yt (y) = t−1 (t (y) + t) ,

where t (y) =
∫ y dx

α(x) is an indeterminate integral.

3.1.2. Related classes of growth models

With µ, c > 0, consider now the dynamics (α (y) = µ (1 + y) (log (1 + y))c)

.
yt= µ (1 + yt) (log (1 + yt))

c , y0 = y > 0. (39)

Introducing zt = log (1 + yt) and z = log (1 + y), zt obeys (35) with initial condition
z. Integrating (39), we get formally if c ̸= 1

yt (y) = exp
(
(log (1 + y))1−c + µ (1− c) t

)1/(1−c)
− 1. (40)

We conclude:
• 0 < c < 1: the integrated solution makes sense and the growth of yt is exp-algebraic

(stretched exponential) at algebraic rate 1/ (1− c) > 1.
• c > 1: an explosion or blow-up of yt occurs in finite time t∞ (y) =

(log (1 + y))1−c / [µ (c− 1)]. We get

yt (y) = (1 + y)

(
1− t

t∞(y)

)1/(1−c)

− 1,

with an essential singularity.
• c = 1: then (39) has a super-exponential solution

yt (y) = (1 + y)e
µt

− 1 for t ≥ 0. (41)
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Growth occurs at super-exponential (or double exponential) pace. With t (y) =∫ y dx
µ(1+x) log(1+x) =

1
µ log (log (1 + y)), one can check that

yt (y) = t−1 (t (y) + t) .

One can extend the range of c as follows: if c = 0, yt = (1 + y) eµt−1, the Malthusian
exponential growth regime. If c < 0, from (40) and because 1/ (1− c) < 1, the growth
of yt is exp-algebraic with time, now at algebraic rate smaller than 1.

Let us finally discuss some related choices of α (y).
- α (y) = α0e

y leading to

yt (y) = − log
(
e−y − α0t

)
= y − log (1− t/t∞ (y)) , t < t∞,

which explodes logarithmically at t∞ (y) = e−y/α0 (a logarithmic singularity).

3.1.3. Including immigration

We will now briefly consider two cases involving immigration (α0 > 0).

1/ α (y) = α0 + α1y
c (constant immigration rate α0)

2/ α (y) = α0y + α1y
c (linear immigration rate α0y).

Case 1/: The solution to
.
yt= α (yt) = α0 + α1y

c
t , y0 = y is yt (y) = t−1 (t (y) + t)

where

t (y) =

∫ y dx

α0 + α1xc
=

x

α0
F

(
1,

1

c
,
1

c
+ 1;−α1

α0
yc
)
,

involving the Gauss hypergeometric function F (a, b, c; z) . When c = 1,

yt (y) = yeα1t +
α0

α1

(
eα1t − 1

)
, (42)

corresponding to a Malthus growth model enhanced by immigration.
Clearly, t∞ (y) <∞⇔ c > 1 (state ∞ accessible in finite time).

Case 2/: The solution to
.
yt= α (yt) = α0yt + α1y

c
t , y0 = y is explicitly known

(Bernoulli ode). It is:

yt (y) = eα0t

(
y1−c +

α1

α0

(
1− e−(1−c)α0t

))1/(1−c)
,

for all c ̸= 1. When c = 1, yt (y) = ye(α0+α1)t (Malthus), already discussed.
Clearly, t∞ (y) < ∞ ⇔ c > 1 (state ∞ accessible in finite time given by t∞ (y) =
1

(c−1)α0
log
(
1 + α0

α1
y1−c

)
).

3.1.4. From growing to declining populations

A simple time change allows to switch from growing to declining population models.
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If α (y) → α (y) := −α (y) where α is as above non-negative, the population size
with dynamics

.
yt= −α (yt) , y0 = y (43)

now shrinks as time passes by, starting from y > 0. The flow of such decay models
is simply obtained while making the substitution t → −t in the above expressions of
yt (y) with growth rate α (y) .

For instance, if α (y) = α1y
c, respectively α (y) = α0 (1 + y) logc (1 + y), respec-

tively from (36), (40),

yt (y) =
(
y1−c + α1 (c− 1) t

)1/(1−c)
yt (y) = exp

(
(log (1 + y))1−c + α0 (c− 1) t

)1/(1−c)
− 1,

are the flows associated to α (y) = −α1y
c and α (y) = −α1 (1 + y) (log (1 + y))c. Each

such flow now goes extinct in finite time if c < 1. If c > 1, the first flow has algebraic
decay with t whereas the second one decays like a stretched exponential.

The declining population model obtained while reversing time of the Malthus model
with immigration (42) is

yt (y) =

(
y +

α0

α1

)
e−α1t − α0

α1
.

It corresponds to an exponentially decaying model enhanced by emigration at constant

rate (α (y) = −α0 − α1y). It goes extinct in finite time t0 (y) =
1
α1

log
(
α0+α1y
α0

)
.

For a declining population generated by α (y) = −α (y), with 0 ≤ a < y, the integral

ta (y) :=

∫ y

a

dx

α (x)

is the time for the flow to first hit a starting from y.
If t0 (y) :=

∫ y
0

dx
α(x) <∞, there is finite time extinction of yt (y) and

yt (y) = t−1
0 (t0 (y)− t) .

In general,

yt (y) = t−1 (t (y) + t)

where t (y) := −
∫ y dx

α(x) , as an indeterminate integral.

We now have a quite vast class of decaying population models, ranging from loga-
rithmic, algebraic, stretched exponential or doubly exponential decay, some of which
can go extinct in finite time, which is the nonlinear version of h (t) having bounded
support. These can be obtained while reversing time in (38), (36), (40) and (41),
respectively. They are the main ingredients of this Section.
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3.2. The non-linear shot-noise model

Consider the decaying flows (43). Define the non-linear shot-noise process as:

Xt =

∫ t

0

∫
R+

yt−s (y)µ (ds, dy) .

Equivalently, with (Yn) an iid sequence of initial conditions:

Xt =
∑
n≥1

yt−Sn
(Yn)1 (Sn ≤ t) ,

summing up at t all the family sizes (with initial input Yn) which occurred in the past
at immigration events Sn as points of a Poisson process Pt with rate λt. After each
shot, each family size decays following the flow (43); see Eliazar and Klafter (2007).

ClearlyXt is non-Markov except when yt (y) = ye−µt (the Malthus case with α (y) =
µy): we are back to the previous formulation with an impulse function h (t) = e−µt.

Then, by Campbell formula:

ΦXt (q) = exp

{
−
∫ t

0
ds · λs

(
1−Ee−qyt−s(Y )

)}
.

Clearly, supposing mn := EY n < ∞, in view of yt (Y ) < Y , then E (yt (Y )n) < ∞
for all ∞ > t ≥ 0. Then

kn (t) =

∫ t

0
dsλsE (yt−s (Y ))n <∞

is the n−th cumulant of Xt, with in particular k1 (t) = E (Xt) and k2 (t) = σ2 (Xt).
From (9)

− log ΦXt (q) =
∑
n≥1

(−1)n−1

n!
kn (t) q

n.

If Pt is homogeneous Poisson at rate λ, under the condition

λ

∫ ∞

0
Emin (1, ys (Y )) ds <∞,

then

ΦX∞ (q) = exp

{
−λ
∫ ∞

0
ds ·

(
1−Ee−qys(Y )

)}
is the LST of the equilibrium population size.

If for all n ≥ 1, kn = λ
∫∞
0 dsE (ys (Y ))n <∞, then ΦX∞ (q) exists with

− log ΦX∞ (q) = λ

∫ ∞

0
ds ·

(
1−Ee−qys(Y )

)
=
∑
n≥1

(−1)n−1

n!
knq

n.
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Example:
- Suppose α (y) = α1y

c, with 2 > c > 1. Then,

ys (Y ) =
(
Y 1−c + α1 (c− 1) s

)1/(1−c)
< Y,

where c > 1 guarantees that there is no finite-time extinction. Integrability of
E (ys (Y ))n (existence of kn) is guaranteed if sn/(1−c) is integrable at s = ∞, re-
gardless of the initial condition Y . And this is the case for all n > c − 1, so for all
n ≥ 1 if c < 2.

The key point here is that sys (Y )→ 0 as s→∞, paralleling (5).
- If c < 1, there is extinction of ys (Y ) at the finite time t0 (Y ) = Y 1−c/ [α1 (1− c)],

and E (ys (Y ))n is always integrable.

More generally, whenever the flow yt (y) hits 0 in finite time t0 = t0 (y) (now de-
pending on the initial condition y),

ΦXt (q) = exp

{
−λE

∫ t∧t0(Y )

0
ds
(
1− e−qys(Y )

)}
,

so that P (Xt = 0) = e−λt∧Et0(Y ). If Et0 (Y ) <∞, as t→∞ :

ΦXt (q)→ exp

{
−λE

∫ t0(Y )

0
ds
(
1− e−qys(Y )

)}
,

which is always the well-defined infinitely-divisible limiting LST of X∞. It has an atom
at 0: P (X∞ = 0) = e−λEt0(Y ).

Whenever (Sn) is a standard Poisson sequence and Et0 (Y ) < ∞, an estimate of
the distribution of the first return time to zero of Xt can be obtained as follows: let
X+
t denote the shifted nonlinear shot-noise process Xt started at its first jump, so

X+
t = Xt+T1

and let τ+ = inf
(
t > 0 : X+

t = 0
)
. Recalling X0 = 0, we have

ΦX
+

t (0) := P
(
X+
t = 0

)
=

∫ t

0
P (τ+ ∈ ds)P (Xt−s = 0) .

Now,

ΦXt (0) : = P (Xt = 0) = e−λt + λ

∫ t

0
dse−λsP

(
X+
t−s = 0

)
= e−λt + λe−λt

∫ t

0
dseλsP

(
X+
s = 0

)
.

Taking the temporal Laplace transforms, with ΨX (p) :=
∫∞
0 dte−ptΦXt (0), ΨX+

(p) :=∫∞
0 dte−ptΦX

+

t (0) and τ̂+ (p) :=
∫∞
0 e−ptP (τ+ ∈ dt), we get

ΨX (p) =
1

λ+ p

(
1 + λΨX+

(p)
)

and ΨX+

(p) = τ̂+ (p)ΨX (p) .

The temporal Laplace transform ΨX (p) is the Green kernel of Xt at (0, 0) with
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ΨX (0) = ∞ if 0 is visited infinitely often. Recalling P (Xt = 0) = e−λt∧Et0(Y ), one
can check that

ΨX (p) =
1

p+ λ

(
1− e−(λ+p)Et0(Y )

)
+

1

p
e−(λ+p)Et0(Y ) and ΨX+

(p) =
1

p
e−(λ+p)Et0(Y ),

leading to

τ̂+ (p) = Ee−pτ+ =
λ+ p

λ+ pe(λ+p)Et0(Y )
,

with P (τ+ <∞) = τ̂+ (0) = 1. We also get E (τ+) = λ−1
(
eλEt0(Y ) − 1

)
=

λ−1 (1−P (X∞ = 0)) /P (X∞ = 0) < ∞. Defining τ0,0 = T1 + τ+, E (τ0,0) =
λ−1/P (X∞ = 0) .

3.3. The embedded chain

Let Zn = XSn
. We have

Zn+1 = yTn+1
(Zn) + Yn+1

Sn+1 = Sn + Tn+1

showing that (Zn, Sn) is in general a bivariate Markov chain whose second marginal
only (Sn) is itself a Markov chain.

The transition matrix of (Zn, Sn) may be read from

P
(
Zn+1 ≤ z′, Tn+1 ≤ t | Zn = z, Sn = s

)

=

∫ t

0
P
(
Yn+1 ≤ z′ − ys′ (z)

)
P
(
Tn+1 ∈ ds′ | Sn = s

)
=

∫ t

0
FY
(
z′ − ys′ (z)

)
P
(
Tn+1 ∈ ds′ | Sn = s

)
.

If Pt is homogeneous Poisson at rate λ, then (Sn) is a Markov chain with independent
increments and so (Zn) is itself a Markov chain with transition matrix

P
(
Zn+1 ≤ z′ | Zn = z

)
= P

(
Yn+1 ≤ z′ − yTn+1

(z)
)

= λ

∫ ∞

0
ds′e−λs

′
FY
(
z′ − ys′ (z)

)
.

Then if Zn
d→ Z as n → ∞, then, with yT (Z ′) a random variable taking values in

[0, Z ′] ,

Z
d
= yT

(
Z ′)+ Y.

Here, Z ′ d= Z and in the RHS (T,Z ′, Y ) are mutually independent. This is a non-linear
fixed-point equation, with Z → yT (Z) a non-linear contracting operator which has or
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not solutions.

4. Shot-noise vs branching processes with immigration

In this Section we finally describe a related class of decay/surge process which is
Markovian, namely (sub-)critical branching processes with immigration. The speci-
ficity of such models is that (i) the decaying dynamics of overlapping subpopulations
is now a (sub-)critical branching, so random, process, and (ii) they go extinct in finite
time.

A very popular model for quantitatively understanding the emergence of virus re-
sistance both in bacterial colonies and in malignant tumors was introduced in 1943
by Luria and Delbrück (1943). In this setup, individual resistant mutants emerge ran-
domly at birth events embedded in an exponentially growing sensitive bacterial popu-
lation. The Luria-Delbrück experiment (known as the Fluctuation Test) demonstrates
that genetic mutations of bacteria arise permanently, even in the absence of selection,
rather than being a response to selection, thereby justifying the latter scenario. It was
thus confirmed that mutations do not occur out of necessity (a Lamarckian approach),
but instead can occur many generations before the selection strikes (the Darwinian
point of view).

It is tacitly assumed in such Luria-Delbrück inspired models that the sensitive
population is immune as soon as coexists some mutant in the population; see Huillet
(2017). The understanding of the fraction of time spent in a mutant-free state appears
desirable because at those local extinction moments, immunity of the sensitive is
lost. The Luria-Delbrück model (1943) thus deals with an intertwining of a two-types
process (sensitive versus mutant cells), whereby individual resistant mutants col-
lectively emerge (and grow) at random birth events embedded in an exponentially
growing sensitive population. The sensitive population grows deterministically at rate
λt > 0 and then, on top of it, mutants appear randomly, at a rate proportional to the
sensitive population growth rate. In the Lea-Coulson model (1949), mutants arrive
one at a time (the surge events) and each mutant subpopulation typically grows,
upon appearance, according to a supercritical pure-birth Yule branching process, (see
Keller and Antal (2015)). It extends the Luria-Delbrück model where each mutant
subpopulation grows deterministically in an exponential way. The Lea-Coulson model
is thus a growth-surge type of models appearing in the bacterial resistance to virus;
see Kendall (1952) for a survey. A similar point of view arises in carcinogenesis, where

Λt =
∫ t
0 ds · λs describes the size at t of the main tumor and side-metastases (with

growth rate λt driven by the one of the main tumor) play the role of mutants, Kendall
(1960), Antal and Krapivsky (2011) and Durrett (2015).

Here we will focus on a large number of incoming mutants variant of the latter
model, with three main changes. Firstly, the sensitive population will not necessarily
be assumed to grow exponentially. Secondly, mutants will be allowed to arrive at birth
events many at a time (and not just one by one); third, instead of growing along a
supercritical pure-birth Yule process, the size of each mutant subfamily will now evolve
according to a (sub-)critical branching process, including the pure death one. (Sub-
)critical branching processes go extinct with probability 1, so questions pertaining to
the time to first extinction and time spent in state 0 for the cumulated process arise.
In such a way, we are left with a type of decay/surge shot-noise population model with
a zero-set. Let us now formulate our model.

86



Asian Journal of Statistical Sciences Thierry E. Huillet

4.1. The model

We start with the one-mutant at a time case. Let then a population of wild-type cells
grow deterministically at rate λt > 0, with Λt =

∫ t
0 ds · λs < ∞, for all t ∈ (0,∞).

Each wild-type cell is possibly subject to mutation and the rate at which new mutants
are being created, one at a time, is νλt, where ν ∈ (0, 1) is the mutation probability
of each wild-type cell. A flourishing wild-type population with increasing growth
rate with time (such as λt = λta−1, a > 1) favors the adjunction of new mutants
accordingly.

The mutant population (growing on top of the wild-type population) is assumed
to be resistant to a viral attack in contrast with the wild-type population which is
assumed sensitive. Fix a time interval [0, t] . Assume mutations occur at iid times
Sp (t) with common law P (S (t) ∈ ds) = λsds/Λt; there are P (νΛt) such mutation
events where P (νΛt) ∼Poi(νΛt) an inhomogeneous Poisson process with intensity
νΛt. We shall let Pt := P (νΛt) .

Once a mutant is created, it grows (or decays) and forms a clone. Let Mt (1) be
the mutant sub-population size at t given a unique founder mutant came to birth at
time 0. We will assume that Mt (1) evolves according to a Bellman-Harris branch-
ing process with M0 (1) = 1 and global birth and death rate r > 0, the rate at
which some branching event occurs. At branching events, each mutant alive is re-
placed by a random number M ≥ 0 of offspring, with πm = P (M = m) and pgf
ϕ (z) = E

(
zM
)
=
∑

m≥0 πmz
m. We assume thatM has finite mean and variance. With

rb := r
∑

m≥2 (m− 1)πm, rs := rπ1 and rd := rπ0, respectively the birth, stay alike

or death rates, the mutant net death rate is rd − rb = r (1−E (M)) = −rf ′ (1) =: µ.
The sub-families pgf ϕt (z) := E

(
zMt(1)

)
then obeys the Kolmogorov equation

∂tϕt (z) = rf (ϕt (z)) = rf (z) ∂zϕt (z) , ϕ0 (z) = z,

where f (z) = ϕ (z)− z and so, with ϕt1+t2 (z) = ϕt1 (ϕt2 (z)),∫ ϕt(z)

z

dz′

f (z′)
= rt.

Whenever µ < 0 (E (M) > 1), respectively µ = 0 (E (M) = 1) and µ > 0
(E (M) < 1), the branching process Mt (1) is super-critical, respectively critical or
sub-critical. It accounts for the subsequent growth, stay alike or decline of the mu-
tant subfamilies after their time of appearance. We shall herewith limit ourselves
to the (sub)-critical cases µ ≥ 0. One can check, observing the branching property

ϕt1,t2 (z1, z2) := E
(
z
Mt1

(1)
1 z

Mt2
(1)

2

)
= ϕt1 (z1ϕt2−t1 (z2)), t2 ≥ t1 ≥ 0, that

E (Mt (1)) = e−µt ( = 1 if µ = 0)

σ2 (Mt (1)) =

(
ϕ′′ (1)

µ
+ 1

)
e−µt

(
1− e−µt

)
if µ ̸= 0

= rϕ′′ (1) t if µ = 0

Cov (Mt1 (1) ,Mt2 (1)) =

(
ϕ′′ (1)

µ
+ 1

)
e−µt2

(
1− e−µt1

)
if µ ̸= 0

= rϕ′′ (1) t1 if µ = 0.
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Whenever Mt (1) is either subcritical or critical (µ ≥ 0), Mt (1) goes extinct after a
finite extinction time τe, with distribution given by

P (Mt (1) > 0) = 1− ϕt (0) = P (τe > t) .

The time to extinction τe is exponentially distributed in the subcritical case, whereas
it is Pareto(1) distributed in the critical case, so in any such case, extinction occurs
with probability 1. The mutant subpopulations are here assumed to age and end up
dying, while on average E (Mt (1)) = e−µt (subcritical) and E (Mt (1)) = 1 (critical).

Let Nt be the size at t of the whole mutant population, summing up all the con-
tributions of the sub-families which appeared in the past at mutation times (here is

the shot-noise aspect of this process). With M
(p)
t (1) iid copies of Mt (1) and Sp (t) iid

copies of S (t), we obtain Nt as a random superposition of birth and death processes
initiated at the mutation events

Nt =

Pt∑
p=1

M
(p)
t−Sp(t)

(1) . (44)

This model clearly also is the one of Markov branching processes with immigration
at non-constant rate if λs ̸= λ, Pakes (1971), Li et al. (2012). Successful (with proba-
bility ν) mutation events may be viewed as successful migration events giving rise, at
immigration times, to evolving immigrants sub-families along independent branching
processes. Therefore an effective mutation event occurs with probability ν whereas an
attempted migration event fails with probability 1− ν.

Denoting by Sp (t) the ordered version of Sp (t), p = 1, ..., Pt (so with S1 (t) < ... <
SPt

(t)), given Pt = p, the joint density of Sq (t), q = 1, ..., p is:

ft (s1, ..., sp) = p!

p∏
q=1

λsq
Λt
dsq · 10<s1<...<sp<t.

And therefore, the probability generating function (pgf) of Nt reads

ΦNt (z) := E
(
zNt
)

=
∑

p≥0P (Pt = p)
∫
0<s1<...<sp<t

p!
∏p
q=1

λsq

Λt
ϕt−sq (z) dsq

= e−ν
∫ t

0
ds·λs

(
1 +

∑
p≥1

∫
0<s1<...<sp<t

∏p
q=1 λsqϕt−sq (z) dsq

)
= exp

{
−ν
∫ t
0 ds · λs (1− ϕt−s (z))

}
= exp

{
−νΛt

(
1−

∫ t
0 ds ·

λs

Λt
ϕt−s (z)

)}
,

, (45)

where ϕt (z) = E
(
zMt(1)

)
. With t2 ≥ t1 ≥ 0, the first expression of ΦNt (z) in (45) has

the two-point extension

ΦNt1,t2 (z1, z2) = E
(
z
Nt1

1 z
Nt2

2

)
= exp−ν

{∫ t1
0 dsλs (1− ϕt1−s,t2−s (z1, z2)) +

∫ t2
t1
dsλs (1− ϕt2−s (z2))

}
= exp−ν

{∫ t1
0 dsλs (1− ϕt1−s (z1ϕt2−t1 (z2))) +

∫ t2
t1
dsλs (1− ϕt2−s (z2))

}
.

(46)
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One can then check that

E (Nt) =
∫ t
0 ds · λs ·E (Mt−s (1)) = e−µt

∫ t
0 ds · λs · e

µs ( = Λt if µ = 0)

σ2 (Nt) =
∫ t
0 ds · λs ·E

(
Mt−s (1)

2
)
= E (Nt) +

ϕ′′(1)
µ

∫ t
0 dsλt−s · e

−µs (1− e−µs) if µ ̸= 0

σ2 (Nt) = Λt + rϕ′′ (1)
∫ t
0 dsλt−ss if µ = 0

Cov (Nt1 , Nt2) =
∫ t1
0 ds · λs ·E (Mt1−s (1)Mt2−s (1))

Cov (Nt1 , Nt2) =
∫ t1
0 ds · λse−µ(t2−s) + ϕ′′(1)

µ

∫ t
0 dsλs · e

−µ(t2−s)
(
1− e−µ(t1−s)

)
if µ ̸= 0

Cov (Nt1 , Nt2) = Λt1 + rϕ′′ (1)
∫ t1
0 ds · λt1−ss = σ2 (Nt1) if µ = 0.

Note the over-dispersion property σ2 (Nt) > E (Nt) and

ΦNt (0) = P (Nt = 0) = exp
{
−νΛt

(
1−

∫ t
0 ds ·

λs

Λt
ϕt−s (0)

)}
ΦNt1,t2 (0, 0) = P (Nt1 = 0, Nt2 = 0)

= exp−ν
{∫ t1

0 dsλs (1− ϕt1−s (0)) +
∫ t2
t1
dsλs (1− ϕt2−s (0))

}
.

(47)

The last expression of ΦNt (z) in (45) shows that, for each t, (
d
= meaning equality in

distribution)

Nt
d
=

Pt∑
p=1

C
(p)
t , (48)

where C
(p)
t are iid copies of Ct, the ‘typical’ clone size at t. The common law of the

C
(p)
t s is characterized by its pgf

E
(
zCt
)
=

1

Λt

∫ t

0
ds · λsϕt−s (z) , (49)

a probability mixture of the ϕs (z)s and therefore a pgf. Note that P (Ct = 0) = 0 if
and only if ϕt (0) = P (Mt (1) = 0) = 0 for all t (the pure birth case). So, if Ct = 0
has a positive probability (death is admissible in the binary branching process), Nt

is a compound Poisson rv with iid clone sizes possibly zero. This could be adjusted
as usual while considering a modified intensity νΛt → νΛt (1−P (Ct = 0)) and a new
clone size with modified conditional pgf

E
(
zCt
)
→ E

(
zC

+
t

)
=
(
E
(
zCt
)
−P (Ct = 0)

)
/ (1−P (Ct = 0)) ,

where C+
t := Ct | Ct > 0. Several authors study the large−t behavior of C+

t , Nicholson
and Antal (2016).

An equivalent path-wise representation of Nt to the one in (44) is

Nt =
∑
n≥1

M
(n)
t−Sn

(1) · 1Sn≤t. (50)

where 0 = S0 < S1 < ... < Sn < ... are points of a¨Poisson process with intensity Λt
on the real half-line.
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From these considerations, the expression (45) of the pgf of Nt, namely

ΦNt (z) = exp

{
−ν
∫ t

0
ds · λt−s (1− ϕs (z))

}
,

takes the alternative form

ΦNt (z) = exp

{
−ν
∫ ϕt(z)

z
dz′ · λ∫ ϕt(z)

z′
dy

rf(y)

· 1− z
′

rf (z′)

}
, (51)

while introducing the change of variables z′ = ϕs (z) and while observing
∫ ϕt(z)
z

dy
rf(y) =

t and
∫ z′
z

dy
rf(y) = s.

Whenever (Sn) is a standard Poisson sequence with rate λ,

ΦNt (z) → ΦN∞ (z) = exp

{
−νλ

∫ ∞

0
ds (1− ϕs (z))

}
= exp

{
−νλ
r

∫ 1

z
dz′

1− z′

f (z′)

}
,

the pgf of a generalized discrete self-decomposable random variable, (see Section 4 pp.
448 in Steutel and van Harn (2003)), so infinitely divisible (else compound Poisson).
In that case, the process Nt is Markov and it can be checked that ΦNt (z) solves the
PDE:

∂tΦ
N
t (z) = rf (z) ∂zΦ

N
t (z) + λ (z − 1)ΦNt (z) , ΦN0 (z) = 1, (52)

involving a local first order (differential) operator, including an additional order zero
multiplicative term.

4.2. Related questions and some extensions

4.2.1. Many mutants at a time

So far, Mt (1) represented the size at t of a subpopulation descending from a single
ancestor which appeared at time 0. If there are M0 (possibly random) such ancestors,
each of them generating Mt (1) descendants in a mutually independent way, then with
h (z) := EzM0 and Mt (M0) the size at t of these M0 ancestors, we have EzMt(M0) =
h
(
EzMt(1)

)
= h (ϕt (1)). Note that, if M0 and M1 are independent with respective

pgfs h0 and h1 :

EzMt(M0+M1) = (h0h1) (ϕt (1)) = EzMt(M0)EzMt(M1),

entailing the linearity in law property: Mt (M0 +M1)
d
= Mt (M0) +Mt (M1) , where

the two terms in the RHS are independent.
Suppose then mutants (or immigrants) when they are being produced enter the

system many at a time, describing the amplitudes of the shocks, now random. With
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M
(k)
0 iid positive discrete random variables, independent of M

(k)

t−S(k)
t

(1) and mutually

independent, define

Nt =

Pt∑
p=1

M
(p)
t−Sp(t)

(
M

(p)
0

)
, (53)

where Mt (M0) =
∑M0

j=1M
(j)
t (1) with M

(j)
t (1) iid copies of Mt (1) . Then

E
(
zNt
)
= ΦNt (z) = exp

{
−ν
∫ t

0
ds · λs (1− h (ϕt−s (z)))

}
, (54)

where h (z) = E
(
zM0

)
is the pgf of M0, obeying h (0) = 0. An equivalent way to see

the effect of the mutation probability ν is to introduce the modified pgf

h (z) := 1− ν + νh (z) ,

and to consider that the rate of appearance of immigrants is λt instead of νλt. With
probability h(0) = 1−ν the migration event took place but failed to let any immigrant
in, whereas, with probability ν, a random number M0 > 0 of immigrants succeeded
entering the system at migration events with rate λt. We then let h(z) =: E

(
zM0

)
now for some rv M0 ≥ 0.

When Pt is homogeneous Poisson at rate λ, the process Nt is a time-homogeneous
Markov process and it can be checked that ΦNt (z) solves:

∂tΦ
N
t (z) = rf (z) ∂zΦ

N
t (z) + νλ (h (z)− 1)ΦNt (z) , ΦN0 (z) = 1 (55)

which is a local (differential) operator. In that case

ΦNt (z) → ΦN∞ (z) = exp

{
−λ
∫ ∞

0
ds (1− h (ϕs (z)))

}
= exp

{
−λ
r

∫ 1

z
dz′

1− h (z′)
f (z′)

}
,

the pgf of a generalized discrete self-decomposable random variable, (see Section 4 pp.
448 in Steutel and van Harn (2003)). Note that

P (N∞ = 0) = ΦN∞ (0) = exp

{
−λ
r

∫ 1

0
dz′

1− h (z′)
f (z′)

}
> 0.

Remark. In the many mutants at a time case, the joint pgf (54) of (Nt1 , Nt2), t2 ≥
t1 ≥ 0, extends to

ΦNt1,t2 (z1, z2) = exp−ν

{ ∫ t1
0 dsλs (1− h (ϕt1−s (z1ϕt2−t1 (z2))))

+
∫ t2
t1
dsλs (1− h (ϕt2−s (z2)))

}
.
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4.2.2. The joint distribution of Pt := P (Λt) and Nt

How many mutation events are responsible for the observation of Nt = n overall
mutants at t? This question requires the computation of the joint pgf of (Pt, Nt). It is

E
(
zPt

0 z
Nt

)
= exp

{
−ν
∫ t

0
ds · λs (1− z0h (ϕt−s (z)))

}
, (56)

so that by Bayes formula

P (Pt = p | Nt = n) =
[zp0z

n]E
(
zPt

0 z
Nt

)
[zn]E (zNt)

.

Here [zn]E
(
zNt
)
denotes the zn−coefficient of E

(
zNt
)
.

4.2.3. The number of mutants with at least m representatives at time t

Consider the quantity

Pt (m) =

Pt∑
p=1

1
(
M

(p)
t−Sp(t)

(1) > m
)
,

counting the number of mutants having appeared in the past with at least m+ 1 ≥ 0
representatives at time t (the frequency spectrum). We have

E
(
zPt(m)

)
= exp

{
−ν
∫ t

0
ds · λs

(
1−E

(
z1(Mt−s(1)>m)

))}
= exp

{
−ν (1− z)

∫ t

0
ds · λsP

(
Mt−s (1) > m

)}
,

where

P (Mt (1) > m) = [zm]
1− ϕt (z)
1− z

.

It is a Poisson distributed rv with intensity
∫ t
0 ds · λsP

(
Mt−s (1) > m

)
. Of particular

interest is Pt (0) because Pt − Pt (0) is the number of mutants that appeared in the
past, with no current representative at time t. This makes sense only if extinction
of subfamilies are possible, requiring π0 > 0 in the branching mechanism, so that
ϕt (0) = P (Mt (1) = 0) > 0.

4.2.4. A model in the continuum

Suppose Yt :=
∑Mt(M0)

m=1 Ym where (Ym,m ≥ 1) is an iid sequence of positive rvs,
independent of Mt (M0). In such situations, not only the number of mutants matters
but also the ‘charge’ Ym that each mutant carries with it. Put ϕY (q) = E

(
e−qY

)
and
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consider

Xt =

Pt∑
p=1

Y(p)
t−Sp(t)

.

Then, by Campbell formula,

E
(
zPt

0 e
−qXt

)
= exp

{
−ν
∫ t

0
ds · λs (1− z0h (ϕt−s (ϕY (q))))

}
(57)

is the joint pgf of Pt and Laplace-Stieltjes transform of Xt > 0. For such models,
at mutation events, a random quantity Y. enters the system and evolves accordingly.
Note,

E
(
e−qXt

)
=: Φt (q) = ΦNt (ϕY (q))

and so Xt is Markov as well. The events Xt = 0 and Nt = 0 coincide.
Whenever (Sn) is a standard Poisson sequence,

ΦXt (z)→ ΦX∞ (z) = exp

{
−λ
r

∫ 1

ϕY (q)
dz′

1− h (z′)
f (z′)

}
= ΦN∞ (ϕY (q)) , (58)

the LST of the limiting random variable X∞. Note that X∞ has an atom at 0 with
mass

P (X∞ = 0) = ΦN∞ (0) = exp

{
−λ
r

∫ 1

0
dz′

1− h (z′)
f (z′)

}
,

under the additional assumption (together with µ > 0 meaning sub-criticality)

E log+M0 <∞, leading to
∫ 1
0 dz

′ 1−h(z′)
f(z′) <∞.

4.2.5. The time spent in a mutant-free state: local extinctions

Let It =
∫ t
0 1 (Ns = 0) ds be the fraction of the time interval [0, t] free of mutants (the

length of the random set uncovered by the mutant sub-populations). We have

E (It) =

∫ t

0
P (Ns = 0) ds =

∫ t

0
ΦNs (0) ds and

E

[(∫ t

0
1 (Ns = 0)

)2
]

= E
(
I2t
)
=

∫ t

0

∫ t

0
P (Nt1 = 0, Nt2 = 0) dt1dt2

=

∫ t

0

∫ t

0
ΦNt1,t2 (0, 0) dt1dt2.

The quantities ΦNs (0) and ΦNt1,t2 (0, 0) to be integrated are available from (47).
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4.2.6. An estimate of the first return time to zero

This question was addressed in Zubkov (1972) but with a different line of proof. When-
ever (Sn) is a standard Poisson sequence, an estimate of the distribution of the first
return time to zero of Nt can be obtained as follows: let N+

t denote the process Nt

started at its first successful jump, so N+
t = Nt+T1

and let τ+ = inf
(
t > 0 : N+

t = 0
)
.

Recalling N0 = 0, we have

ΦN
+

t (0) := P
(
N+
t = 0

)
= ν

∫ t

0
P (τ+ ∈ ds)P (Nt−s = 0) .

Now,

ΦNt (0) : = P (Nt = 0) = e−λt + λ

∫ t

0
dse−λsP

(
N+
t−s = 0

)
= e−λt + λe−λt

∫ t

0
dseλsP

(
N+
s = 0

)
.

Taking the Laplace transforms, with ΨX (p) :=
∫∞
0 dte−ptΦNt (0), ΨX+

(p) :=∫∞
0 dte−ptΦN

+

t (0) and τ̂+ (p) :=
∫∞
0 e−ptP (τ+ ∈ dt), we get

ΨX (p) =
1

λ+ p

(
1 + λΨX+

(p)
)

and ΨX+

(p) = ντ̂+ (p)ΨX (p) .

So, with τ̂+ (p) :=
∫∞
0 e−ptP (τ+ > t) dt = 1

p (1− τ̂+ (p)) the LST of the tail distribu-

tion of τ+, and Ψ̂ (p) := 1− pΨX (p) = −
∫∞
0 dte−pt∂tΦ

N
t (0), we get

τ̂+ (p) =
(λ+ p)ΨX (p)− 1

λνΨX (p)
and

τ̂+ (p) =
1− pΨX (p)

λνpΨX (p)
=

Ψ̂ (p)

λν
(
1− Ψ̂ (p)

) .
Recalling ΦN0 (0) = 1, as p → 0, by the initial value theorem, Ψ̂0 (p) → 1 − ϕ

where ϕ := ΦN∞ (0) ≥ 0, showing that in the subcritical regime, τ̂+ (p) → E (τ+) =
(1− ϕ) / (λνϕ), with ϕ ∈ (0, 1) . Hence, τ+ <∞ with probability 1. The tail distribu-

tion is characterized by the pole of τ̂+ (p), Feller (1957). If the equation Ψ̂ (p) = 1 has a

real root −p0, with −µ ≤ −p0 < 0, then, as t→∞, P (τ+ > t) ∼
(
λνΨ̂′ (−p0)

)
e−p0t

(exponential tails) whereas if Ψ̂ (−µ) < 1, then τ+ has sub-exponential tails. See
Zubkov (1972) for more details on this and for the subtleties concerning the criti-
cal regime µ = 0. In the critical case indeed, ΦNt (0) → ϕ := ΦN∞ (0) = 0 and so
E (τ+) =∞.

This gives also the distribution of the first return time to zero from above of Xt

defined above. Note that, as t→∞

t−1

∫ t

0
1 (Xs = 0)→ P (X∞ = 0) .
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4.2.7. The embedded chain

The relation of N (t) with its embedded version is, in part, described in Steutel et al.
(1983).

Let Zn = NSn
(with Z0

d
= 0) be the embedded chain of Nt. Note now Zn ≥ 0. We

have

Zn+1 =MTn+1
(Zn) +M0

leading, if ΦZn (z) = E
(
zZn
)
, to the recurrence

ΦZn+1 (z) = h (z) ΦZn
(
ϕ (z)

)
, ΦZ0 (z) = 1,

the one of a Galton-Watson process with immigration with equivalent branching mech-
anism

ϕ (z) = E
(
zMT

)
= λ

∫ ∞

0
e−λtϕt (z) dt,

and pgf for the number of immigrants h(z). We note ϕ′ (1) = E (MT ) = λ/ (λ+ µ) < 1
in the subcritical case µ > 0.

If state 0 is assumed absorbing, let Na
t be the (absorbed) version of Nt for which

Na
t = 0 entails Na

t+s = 0 for all s > 0. Denoting Zan = Na
Sn

the embedded version of

Na
t and ΦZ

a

n (z) = E
(
zZ

a
n

)
, we get the modified recurrence

ΦZ
a

n+1 (z) = h (z) ΦZ
a

n

(
ϕ (z)

)
+ (1− h (z)) ΦZa

n (0) , ΦZ
a

0 (z) = 1.

Let τ
(d)
+ = inf (n ≥ 1 : Zan = 0) be the discrete time to extinction of Zan (the time to

first extinction of Zn). We have

P
(
τ
(d)
+ > n

)
= 1− ΦZ

a

n (0) =: Φ
Za

n (0) ,

obeying the recurrence, n ≥ 0,

Φ
Za

n+1 (0) = h (0)ΦZ
a

n

(
ϕ (0)

)
+ (1− h (0))ΦZ

a

n (0) , ΦZ
a

0 (0) = 1.

We can exploit the results of Zubkov (1972) and Seneta and Tavaré (1983) to charac-

terize the tail distribution of the discrete time to first extinction τ
(d)
+ of the embedded

chain of N (t).

4.3. The binary branching process example: one mutant at a time

We illustrate some of the topics just discussed in case of a one mutant at a time
(sub-)critical binary branching process with immigration, triggered in most cases by
a homogeneous Poisson process Pt.

Whenever E (M) < ∞ and σ2 (M) < ∞, there is not much loss of generality in
assuming thatMt (1) is a binary branching process instead of a general Bellman-Harris
one. In such a situation though, M has all its moments finite and the pgf ϕt (z) has an
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explicit form. Upon its appearance here, each mutant duplicates according to a birth (2
offspring with probability π2), dies according to a death (0 offspring with probability
π0) process, or stays alike with probability π1, π0+π1+π2 = 1. We limit ourselves in the
analysis below to the case where mutants arrive one at a time (h (z) = z). The global
birth and death rate is r > 0, the rate at which some event, either birth, death or stay
alike, occurs. With rb := rπ2, rs := rπ1 and rd := rπ0, then r = rb+rs+rd. The mutant
net death rate is µ := rd − rb = r (1−E (M)) = r (π0 − π2). We assume µ ≥ 0 ((sub-
)criticality: π0 ≥ π2) translating the decaying nature of the mutant subpopulations
once they have appeared. Each descendant of the original mutant branches in the same
way, independently of one another.

In the sequel, we shall let

ρ := π0/π2 = rd/rb, θ := λ/µ and
ν := νλ/rb, the scaled mutation probability.

For (noncritical) birth and death binary branching processes with µ ̸= 0, the sub-
families pgf ϕt (z) := E

(
zMt(1)

)
then obeys ∂tϕt (z) = rf (ϕt (z)), ϕ0 (z) = z, where

f (z) = π0 + π1z + π2z
2 − z = (1− z) (π0 − π2z). The solution is, Harris (1963),

ϕt (z) = E
(
zMt(1)

)
=
π0
(
1− e−µt

)
−
(
π2 − π0e−µt

)
z

(π0 − π2e−µt)− π2 (1− e−µt) z
1− ϕt (z)
1− z

=
e−µt (π0 − π2)

(π0 − π2e−µt)− π2 (1− e−µt) z
.

Equivalently, with ρ = π0/π2 = rd/rb,

ϕt (z) = 1− e−µt (1− z)
1 + rb

µ (1− e−µt) (1− z)
. (59)

In the critical case with π0 = π2 (rd = rb)

ϕt (z) = E
(
zMt(1)

)
= 1− 1− z

1 + rbt (1− z)
.

with E (Mt (1)) = 1 (constant sub-population size on average). We have

E (Mt (1)) = e−µt if µ ̸= 0, E (Mt (1)) = 1 if µ = 0

σ2 (Mt (1)) =
π0 + π2
π0 − π2

e−µt
(
1− e−µt

)
if µ ̸= 0

= 2rbt if µ = 0

So, with E
(
Mt (1)

2
)
= σ2 (Mt (1)) +E (Mt (1))

2

E
(
Mt (1)

2
)

=
(π0 + π2) e

−µt − 2π2e
−2µt

π0 − π2
if µ ̸= 0

= 2rbt+ 1 if µ = 0
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Next, when µ ̸= 0,

P (Mt (1) = 0) =
[
z0
]
ϕt (z) =

rd
(
1− e−µt

)
rd − rbe−µt

P (Mt (1) > 0) =
(rd − rb) e−µt

rd − rbe−µt

P (Mt (1) = m) = [zm]ϕt (z) = P (Mt (1) > 0) ptq
m−1
t , m ≥ 1

P (Mt (1) > m) =
[
zk
] 1− ϕt (z)

1− z
= P (Mt (1) > 0) qmt , m ≥ 0

P (Mt (1) > m |Mt (1) > 0) = qmt , m ≥ 0.

where qt =
rb(1−e−µt)
rd−rbe−µt , pt = 1− qt.

P (Mt (1) > m) = (rd − rb)
(
rb
(
1− e−µt

))m
(rd − rbe−µt)m+1 .

Note E (Mt (1)) = ϕ′t (1) = e−µt.
Depending on µ < 0, µ > 0 or µ = 0, the binary branching process Mt (1) is super-

critical, sub-critical or critical. It accounts for the possibility for each subfamily either
to grow or to decline till extinction after its appearance.

Remark. Although the super-critical case is not our main concern, we mention
some of its aspects as it appears in the Luria-Delbrück model of bacterial resistance to
virus. In the super-critical case (µ < 0), extinction occurs with positive probability at
time τe. We have

1− ϕt (0) = P (τe > t) =
e−µt

1− rb
µ (e−µt − 1)

(60)

and

P (τe <∞) = 1 +
µ

rb
=
rd
rb

= ρ if µ < 0.

So, in the super-critical birth and death case, ρ ∈ (0, 1) is the probability of extinction
of Mt (1), as the smallest solution in [0, 1] of f (z) = 0. And, given extinction has
occurred, the tail of the distribution of τe is exponential with mean −1/µ.

Note that if µ < 0 : qt ∼ 1 + µ
rb
eµt as t→∞, so that for all x > 0

P
(
Mt (1) e

µt > x |Mt (1) > 0
)
= qxe

−µt

t ∼ e
µ

rb
x
as t→∞,

showing that, as t→∞,

eµtMt (1) | (Mt (1) > 0)
d→ Exp (−µ/rb)

an exponential rv with scale parameter −µ/rb. Because P (Mt (1) > 0) ∼ 1−ρ we get

Mt (1)
d∼ ρδ0 + (1− ρ) e−µtExp (−µ/rb) as t→∞.
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There are two extreme cases:
- the Yule-Furry pure birth case is when π0 = 0 else rd = 0 and µ = −rb = −rπ2 < 0,

Yule (1925). Then

ϕt (z) = 1− e−µt (1− z)
1 + (e−µt − 1) (1− z)

=
zeµt

1− z (1− eµt)
,

a geometric pgf with success probability 1− e−rbt. Here

eµtMt (1)
d→ Exp (1) , as t→∞,

(exponential growth of Mt (1)).
- the Greenwood pure death case is when π2 = 0 else rb = 0 and µ = rd = rπ0 > 0.

Then

ϕt (z) = 1− e−µt (1− z) ,

a Bernoulli pgf with success probability e−rdt. Here, for all m > 0

P (Mt (1) > m) = [zm]
1− ϕt (z)
1− z

= e−µt → 0, as t→∞

and P (Mt (1) = 0) = 1 − e−µt → 1, as t → ∞ (Mt (1)
d→ δ0 with Exp(µ) extinction

time distribution).
To estimate the large time t behavior of Nt in (51), we need to evaluate∫ ϕt(z)

z′

dy

rf (y)
=

1

π0r

∫ ϕt(z)

z′

dy

(1− y) (1− y/ρ)
.

Note that, depending on ρ < 1 or ρ ≥ 1, the dominant singularity of 1/f is at ρ or at
1. We have ∫ ϕt(z)

z′

dy

rf (y)
=

1

(π2 − π0) r

(
log

1− ϕt (z)
π0 − π2ϕt (z)

π0 − π2z′

1− z′

)
.

If ρ > 1 (subcritical case: π0 > π2 or µ > 0), ϕt (z)→ 1 (translating that Mt (1)→
0), so with 1− ϕt (z) ∼ e−µt µ(1−z)rd−rbz . Thus∫ ϕt(z)

z′

dy

rf (y)
∼ 1

(π2 − π0) r
log (1− ϕt (z)) ∼ t−

1

µ
log

µ (1− z)
rd − rbz

.

A large t estimate of λ∫ ϕt(z)

z′
dy

rf(y)

appearing in (51) is thus

λ∫ ϕt(z)

z′
dy

rf(y)

∼ λt− 1

µ
log µ(1−z)

rd−rbz

.
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We get

ΦNt (z) ∼ exp

{
−ν
r
λt− 1

µ
log µ(1−z)

rd−rbz

∫ ϕt(z)

z
dz′ · 1− z

′

f (z′)

}

= exp

{
−ν
r
λt− 1

µ
log µ(1−z)

rd−rbz

∫ ϕt(z)

z
dz′ · 1

π0 − π2z′

}

= exp

{
ν

π2r
λt− 1

µ
log µ(1−z)

rd−rbz

log

(
π0 − π2ϕt (z)
π0 − π2z

)}
∼ exp

{
ν

π2r
λt− 1

µ
log µ(1−z)

rd−rbz

log

(
π0 − π2
π0 − π2z

)}
∼

(
π0 − π2
π0 − π2z

) ν

rb
λt

• In case of a sub-linear wild-type population growth, λt → 0 as t → ∞ and so,
with ρ > 1

ΦNt (z) ∼ 1 +
ν

rb
λt log

(
π0 − π2
π0 − π2z

)
and[

z0
]
ΦNt (z) = P (Nt = 0) ∼ 1 +

ν

rb
λt log (1− 1/ρ)

[zn] ΦNt (z) = P (Nt = n) ∼ ν

rb
λt

1

n
ρ−n, n ≥ 1,

emphasizing that asymptotically, Nt → 0 with probability 1.
• If λt →∞ as t→∞ then,

E

(
e
−qNt/

(
ν

rb
λt

))
∼

(
π0 − π2

π0 − π2e
−q/

(
ν

rb
λt

)
) ν

rb
λt

∼ e−q/(ρ−1),

showing that Nt/
(
ν
rb
λt

)
→ 1/ (ρ− 1) almost surely.

• In the constant rate case with λt = λ > 0 a constant, and in the subcritical case
µ > 0

ΦNt (z) = exp

{
−νλ
r

∫ ϕt(z)

z
dz′

1− z′

f (z′)

}
=

(
π0 − π2ϕt (z)
π0 − π2z

) νλ

rb

→
(
π0 − π2
π0 − π2z

) νλ

rb

,

so that Nt converges in distribution to a negative binomial distribution with mean
E (N∞) = νλ/µ and variance σ2 (N∞) = νλrd/µ

2. Only finitely many mutants are
present in the population for large time. The pgf of the global mutant population size

at t may be written as ΦNt (z) =
(
1 + rb

µ

(
1− e−µt

)
(1− z)

)−ν
.
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4.3.1. The mean of It

Considering It =
∫ t
0 1 (Ns = 0) ds, the fraction of the time interval [0, t] free of mutants,

we therefore get

E (It) =

∫ t

0
Φs(0)ds =

∫ t

0

(
1 +

rb
µ

(
1− e−µs

))−ν̄
ds

=
1

µ

(
1 +

rb
µ

)−ν̄ ∫ rb
rd

rb
rd
e−µt

du

u
(1− u)−ν̄ ∼

t→∞

(
1 +

rb
µ

)−ν̄
t

(the latter equivalence is justified by the fact that the main contribution of the integral
is near u = 0 :∫ rb

rd

rb
rd
e−µt

du

u
(1− u)−ν̄ ∼

∫ rb
rd

rb
rd
e−µt

du

u
= log

(
rb
rd

)
− log

(
rb
rd
e−µt

)
∼ µt

)
.

Hence, if µ > 0,E (It) ∼
t→∞

(
1 + rb

µ

)−ν̄
t. With

(
1 + rb

µ

)−ν̄
=
(
µ
rd

)ν̄
∈ (0, 1), a

whole constant fraction of the real line is left uncovered by the mutants.
Remark. In this subcritical case, the process Bt := 1 (Nt = 0) is ergodic and by

Strong Law of Large Numbers, consistently,

1

t
It

a.s.→
t→∞

E (1 (N∞ = 0)) = P (N∞ = 0) =

(
µ

rd

)ν̄
.

4.3.2. The zero-set of {Nt} as an alternating renewal process in the
subcritical case

In the subcritical case, the system alternates between time periods for which Nt > 0
(the covered zones) and those for which Nt = 0 (the uncovered zones). We wish to
understand some of the features of this alternating renewal process, akin to the one of
an M/G/∞ queue in Kendall’s notations, see Takács, L. (1962).

Consider the set {t ≥ 0 : Nt = 0 and Nt+dt > 0} and assume t = 0 belongs to this
set, with Ndt = 1. Let

ϕt (0) = P (τe ≤ t) =

(
1 + rb

µ

) (
1− e−µt

)
1 + rb

µ (1− e−µt)

be the extinction time of this individual.
With Nt := # {0 ≤ s ≤ t : Nt = 0 and Nt+dt > 0} and U (t) := E (Nt) its renewal

function,

U (t) = P (Nt = 0) + νλ

∫ t

0
dsP (Ns = 0) ,

where P (Nt = 0) = e−νλ
∫ t

0
(1−ϕs(0))ds. U (t) is differentiable with renewal rate function

.
U (t) =: u (t) = −νλ (1− ϕt (0))P (Nt = 0) + νλP (Nt = 0) = νλϕt (0)P (Nt = 0) .

100



Asian Journal of Statistical Sciences Thierry E. Huillet

Let T be the random time separating two consecutive points of the renewal set N∞
and ϕT (p) := E

(
e−pT

)
the Laplace transform of its distribution, p ≥ 0 (The rv T

constitutes the length of the excursions of Nt). Then, by classical renewal arguments
in Ross (2010)

ϕT (p) = 1− 1

pÛ (p)
=

û (p)

1 + û (p)
,

where Û (p) =
∫∞
0 dte−ptU (t) and û (p) =

∫∞
0 dte−ptu (t). Letting A (p) :=∫∞

0 dte−ptP (Nt = 0), after an integration by parts, we get

Û (p) = A (p) + νλ

∫ ∞

0
dte−pt

∫ t

0
dsP (Ns = 0) = A (p)

(
1 +

νλ

p

)
.

Therefore

ϕT (p) = 1− 1

A (p) (p+ νλ)
.

We have P (Nt = 0) →
t→∞

e−νλa where a :=
∫∞
0 (1− ϕs(0)) ds = log (1 + rb/µ) /rb and

by Tauberian theorem pA(p) →
p→0

e−νλa = (1 + rb/µ)
−ν̄ . Thus

ϕT (p) ∼
p→0

1− pe
νλa

νλ
,

showing that E(T ) = eνλa/(νλ). Clearly, T = T +E where T is the time interval over
which Nt > 0 (the covered zones) and E the time interval over which Nt = 0 (the
uncovered zones). Besides, T and E are independent and E ∼ exp(νλ). Therefore

ϕT (p) =
p+ νλ

νλ
ϕT (p) = 1− 1

νλ

(
1

A(p)
− p
)
,

with E(T ) =
(
eνλa − 1

)
/(νλ). Let us compute the second moments of T and T and

check their finiteness. With B(p) := 1 − pA(p), we have
(
1− ϕT (p)

)
(1 − B(p)) =

(νλ)−1pB(p). Differentiating twice with respect to p, using the Leibniz rule and eval-
uating the result at p = 0,

E
(
T 2
)
=

2e2νλa

νλ

∫ ∞

0
(P (Nt = 0)−P (N∞ = 0)) dt

=
2e2νλa

νλ

∫ ∞

0

(
e−νλ

∫ t

0
(1−ϕs(0))ds − e−νλa

)
dt
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=
2eνλa

νλ

∫ ∞

0

(
eνλ

∫ ∞
t

(1−ϕs(0))ds − 1
)
dt

=
2eνλa

νλ

∫ ∞

0

((
1− rbe

−µt

rd

)−ν̄
− 1

)
dt

=
2eνλa

νλµ

∑
k≥1

[ν̄]k
kk!

(
rb
rd

)k
<∞.

And

E
(
T 2
)
= E

(
T 2
)
+

2

νλ
E(T ) +

2

(νλ)2
= E

(
T 2
)
+ 2

eνλa

(νλ)2
<∞.

We note that in both cases, consistently with (Ross (2010), p. 450),

P (N∞ = 0) =
E(E)

E(E) +E(T )
= e−νλa = (1 + rb/µ)

−ν̄ =

(
µ

rd

)ν̄
.

4.4. The critical case

For critical birth and death processes, with ϕt(z) = E
(
zMt(1)

)
,

1− ϕt(z) =
1− z

1 + rbt(1− z)
.

Then the clone size pgf reads

E
(
zCt
)
=

∫ t

0
ds · λs

Λt
ϕt−s(z) =

1

t

∫ t

0
ds · ϕt−s(z)

= 1− 1− z
t

∫ t

0
ds · 1

1 + rbs(1− z)

= 1− 1

rbt
log (1 + rbt(1− z))

→
t→∞

1 = E
(
zC∞

)
, with Ct

d−→ 0.

The global mutant population size at tpgf is

ΦNt (z) = exp

{
−νλ(1− z)

∫ t

0

1

1 + rbs(1− z)
ds

}
= (1 + rbt(1− z))−νλ/rb ,

the pgf of a (discrete-self-decomposable) negative binomial distribution with mean
E (Nt) = νλt and variance σ2 (Nt) = νλt (1 + rbt) ∼ νλrbt

2. Summing up infinitely
many (Poi (rt)) clones of size tending to 0 gives rise to a time-dependent random limit
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for Nt. With ν̄ := νλ/rb, we also have, while considering a Laplace-Stieltjes transform:

E
(
c−αNt/(νλt)

)
=
(
1 + rbt

(
1− e−q/(νλt)

))−ν̄
∼

t→∞

(
1 + q

rb
νλ

)−ν̄
,

showing that Ni/(νλt) converges in law to agamma( νλ/rµ, νλ/rd) d stribution with
mean 1 .

Remarks. - In the eritial case under study here, Ni no longer converyes to some
limiting rv N∞ as in the subcritical case, exen though here-also the subfamilies go
crtinct wxith probability Li ergodicity is brokeri by the lang time it takes in the critical
case to reach extinction. - If rb → 0,ΦNj (z)→ e−1λλ(1−z), a Poisson (uλt) distribution
- Thes &-limat: If rt → 0, t → ∞ (or Λt → ∞ ) while rbt ∼ rbΛt/λ = r1 > 0. then
ΦNt (z)→ (1 + κ(1− z))−i, a negative binomial distribution again.

4.4.1. The mean of It

Letting Il =
∫ t
0 1 (Ns = 0) ds the fraction of the time interval [0, t] free of mutants:

E (It) =

∫ t

0
ΦNθ (0)ds =

∫ t

0
(1 + rbs)

−ν̄ ds

=
1

rb(1− ν̄)

(
(1 + rbt)

1 − ν̄ − 1
)

if ν̄ ̸= 1

=
1

rb
log (1 + rbt) if ν̄ = 1.

Three enses arises: regime. - if rb = νλ(ν = 1) : E (It) =
1
rn

log (1 + rbt) +
1
rh

log t4
a logarithmie growth regime: - if rb < νλ(V̄ > 1) : E (Il) ∼

t→∞
1

rn(ν̄−1) : only this

constant portion of the positive real line is left uncovered by the mutants. In all cases,
E (IL) /L,→∞ 0, quite good as well for viral attack protection.

4.4.2. The variance of It

Putting t2 > t1, with

ϕt1,t2 (z1,, z2) = E
(
zMt1
1 zM2

)
= ϕt1 (z1ϕt2−t1 (z2)) .

using (46).

P (Nt1 = 0, Nt2 = 0) = ΦNt1,t2(0, 0) =

= exp−uλ
{∫ t1

0
ds (1− ϕt1→, (0)) +

∫ t2

t1

ds (1− ϕt2−s, (0))
}

= (1 + r6t1)
−ν̄ (1 + rb (t2 − t1))−ν̄ .
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- If ν̄ ̸= 1, we got

E

[(∫ it

0
1 (Ns = 0)

)2
]
= E

(
/2t
)
=

∫ t

0

∫ t

i1
P (Nt1 = 0, Nt11 = 0) dt1dt2

= 2

∫ t

0
dt1 (1 + rbt1)

−D̄
∫ t

t1

dt2 (1 + rt (t2 − t1))−t̄

=
2

r0(1− Γ̄)

∫ t

0
dt1 (1 + r0t1)− p̄

[
(1 + rb (t− t1))t−ν̄ − 1

]
=

2

nn(1− ν̄)

[
h1 ∗ h2(t)−

∫ t

0
w1h1 (t1)

]
,

the first term of which is of convolution type, defining h1(t) = (1 + rbt)
−D̄ and h2(t) =

(1 + rkt)
1−ν̄ . If D̄ ̸= 1, observing and the exponential-integral function Fi(x, p) ∼

y→0

Γ(1− x)px−1, we conclude

ĥ1(p)ĥ2(p)p→0Γ
(
1− ijΓ(2− i)p2π − 3

h1 ∗ h2(t) ∞
t→∞

Γ(1− ΓΓ(2− 4)

r2b
t2−2π

Putting B := Γ(1−ν̄)Γ(z−ν̄)
Γ(3−2ν̄) = B(1− ν̄, 2− ν̄), a beta function, three cases arise: - if

rb > νλ(J̄ < 1) : σ2 (Il) = E
(
I2t
)
−E (It)

2 ∼ 1
∼(2(1− ν̄)B − 1)t2(1−ν̄).

The standard deviation is of the same order as the mean E (It) ∼ 1
r0(1−m̄) t

1. . - if

Tb < νλ(ν̄ > 1, non-integer ) : σ2 (It) ∼
t→∞

r2t (ν̄ − 1)2 : in this regime, It {
t→∞

finite

non-degenerate rv. - Let us finally consider the case p = 1. if rb = νλ(v = 1) :

E
(
t2i
)
=

2

rb

∫ t

0
dt1 (1 + rbt1)

−1 log (1 + rb (t− t1)) =
t2
rb
h1 ∗ h2(t)

which is of convolution type, defining h1(t) = (1 + rbt)
−1 and h2(t) = log (1 + rbt).

We have ĥ1(p) = 1
rh
ep/r0 Ei (p/rh) and ĥ2(p) = 1

pe
p/rb Ei (p/rb). Using Fi(p) ∼

p→0+

γ+log p where γ is the Fuler constant, ĥ1(p)ĥ2(p) ∼
p→0+

1
pmb

(log p)2, leading, by Laplace

inversion, to:

σ2 (It) ∼
t→∞

2

(
log t

rb

)2

−
(
log t

rb

)2

=

(
log t

rb

)2

.

The standard deviation is of the same order as the mean E (It) ∼
t→∞

1
rb
log t as well.
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4.4.3. Covariance of the vacancy process

Consider the rvs Bt1 := 1 (Nt1 = 0) and Bt2 := 1 (Nt2 = 0) , t2 > t1 > 0. With τ =
t2 − t1 > 0, we have

Cov (Bt1 , Bt1+τ ) = P (Nt1 = 0, Nt2 = 0)−P (Nt1 = 0)P (Nt2 = 0)

= (1 + rbt1)
−ν̄ [(1 + rbτ)

−ν̄ − (1 + rb (t1 + τ))−ν̄
]
> 0.

(Bt1 , Bt1+τ ) are positively correlated and owing to (for each fixed t1 )

Cov (Bt1 , Bt1+τ ) ∼
τ largc

ν̄r−ν̄b t1 (1 + rbt1)
−ν̄ τ−(1+ν̄),

there is algebraic power-law decay of the covariances in the shift variable τ , which is
integrable near τ =∞. The covariances are long-ranged.
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